首页> 外文会议>ASME Pressure Vessels and Piping Division/K-PVP conference;PVP2010 >STRESS ANALYSIS OF MITER JOINT IN PIPELINE UNDER INTERNAL PRESSURE OR IN-PLANE BENDING LOADING
【24h】

STRESS ANALYSIS OF MITER JOINT IN PIPELINE UNDER INTERNAL PRESSURE OR IN-PLANE BENDING LOADING

机译:内压或平面弯曲载荷作用下管道细缝的应力分析

获取原文

摘要

This paper presents an elastic stress analysis for miter joints in a pipeline under internal pressure or in-plane bending. Using the three-dimensional theory of elasticity, Green and Emmerson [1] obtained two general expressions of hoop and axial stresses for a mitered pipe, and two specific solutions at the plane of joint for the loading cases of internal pressure and in-plane bending. However, their solution of axial stress for bending case is incorrect, and the stress variations with the pipe axis are not provided. Based on their general expressions, the closed-form solutions of hoop and axial stresses are obtained as functions of the radial location r, the circumferential angle θ, and the half miter angle α, in addition to the applied loading, geometry and material parameters. From these results, the solutions of hoop and normal stresses are obtained at the plane of joint for the two loading scenarios.The proposed theoretical solutions are then validated by three-dimensional finite element results, respectively for elastic loading cases of internal pressure and in-plane bending. The comparison shows that all proposed theoretical solutions of hoop and axial stresses at the plane of joint and in the pipe are in good agreement with the finite element results for both loading cases. The stress analysis shows that the maximum tensile stresses occur on the outside surface at the intrados for the two loading cases, the maximum stresses increase with increasing miter angle, and the axial effect of miter joint stresses on a pipe is limited to length scales in a fraction of the pipe diameter.
机译:本文在内部压力或面内弯曲下,管道中的斜接缝具有弹性应力分析。使用弹性的三维理论,绿色和emmerson [1]获得了两个箍和轴向应力的一般表达式,以及在接头平面上的两个特定溶液,用于内部压力和面内弯曲的装载情况。然而,它们对弯曲壳体的轴向应力的解决方案是不正确的,并且不提供与管轴的应力变化。基于它们的一般表达式,除了施加的负载,几何形状和材料参数之外,还可以获得圆形位置R,周向角度α的径向位置R,周向角度θ和半斜角α的闭合形式溶液。从这些结果,在两个加载场景的接头平面上获得箍和正常应力的溶液。 然后,通过三维有限元件验证所提出的理论溶液,分别用于内部压力和面内弯曲的弹性装载情况。比较表明,在接头平面和管道中的所有提出的箍和轴向应力的理论解和轴向应力与载荷案例的有限元结果良好。应力分析表明,在两个装载病例的墨西哥内部发生最大拉伸应力,随着斜角的增加,最大应力增加,并且管道上的斜切关节应力的轴向效应仅限于a中的长度尺度管道直径的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号