【24h】

STRAIN-BASED TOPOLOGY OPTIMIZATION FOR CRASHWORTHINESS USING HYBRID CELLULAR AUTOMATA

机译:基于混合细胞自动机的基于应变的拓扑优化

获取原文

摘要

Structural design for crashworthiness is a challenging area of research due to large plastic deformations and complex interactions among diverse components of the vehicle. Previous research in this field primarily focused on energy absorbing structures that utilize a desired amount of material. These structures have been shown to absorb a large amount of the kinetic energy generated during the crash event; however, the large plastic strains experienced can lead to failure. This research introduces a new strain-based topology optimization algorithm for crash-worthy structures undergoing large deformations. This technique makes use of the hybrid cellular automaton framework combining transient, non-linear finite-element analysis and local control rules acting on cells. The set of all cells defines the design domain. In the proposed algorithm, the design domain is dynamically divided into two sub-domains for different objectives, I.e., high strain sub-domain (HSSD) and low strain sub-domain (LSSD). The distribution of these sub-domains is determined by a plastic strain limit value. During the design process, the material is distributed within the LSSD following a fully-internal-energy-distribution principle. To accomplish that, each cell in the LSSD is driven to a prescribed target or set point value by modifying its stiffness. In the HSSD, the material is distributed to satisfy a failure criterion given by a maximum strain value. Results show that the new formulation and algorithm are suitable for prac-tical applications. The case studies demonstrate the potential significance of the new capability developed for a wide range of engineering design problems.
机译:由于大的塑性变形和车辆各组成部分之间的复杂相互作用,用于防撞性的结构设计是一个具有挑战性的研究领域。该领域的先前研究主要集中在利用所需量的材料的能量吸收结构上。这些结构已被证明吸收了碰撞事件中产生的大量动能。但是,经历的大塑性应变可能会导致故障。这项研究引入了一种新的基于应变的拓扑优化算法,用于承受大变形的抗撞结构。该技术利用了混合细胞自动机框架,该框架结合了瞬态,非线性有限元分析和作用于细胞上的局部控制规则。所有单元格的集合定义了设计域。在提出的算法中,设计域被动态划分为两个针对不同目标的子域,即高应变子域(HSSD)和低应变子域(LSSD)。这些子域的分布由塑性应变极限值确定。在设计过程中,材料将按照完全内部能量分配的原则分配到LSSD中。为此,通过修改其刚度将LSSD中的每个单元驱动到指定的目标值或设定点值。在HSSD中,材料的分布应满足最大应变值所给出的破坏准则。结果表明,新的公式和算法适用于实践。 实际应用。案例研究证明了针对各种工程设计问题开发的新功能的潜在重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号