【24h】

CHARACTERIZATION AND PERFORMANCE OPTIMIZATION OF 2D LATTICE MATERIALS WITH HEXAGONAL BRAVAIS LATTICE SYMMETRY

机译:六角形Bravais晶格对称的二维晶格材料的表征和性能优化

获取原文

摘要

The current paper examines the static performance of 2D infinite lattice materials with hexagonal Bravais lattice symmetry. Two novel microscopic cell topologies are proposed. The first topology is a semi-regular lattice that has the modified Schafli symbol 3~4.6, which describes the type of regular polygons surrounding the joints of the lattice. Here, 3~4.6 indicates four (4) regular triangles (3) successively surrounding a node followed by a regular hexagon (6). The second topology is an irregular lattice that is referred here as Double Hexagonal Triangulation (DHT).The lattice material is considered as a pin-jointed micro-truss where determinacy analysis of the material micro structure is used to distinguish between bending dominated and stretching dominated behaviours. The finite structural performance of unit cells of the proposed topologies is assessed by the matrix methods of linear algebra. The Dummy Node Hypothesis is developed to generalize the analysis to tackle any lattice topology. Collapse mechanisms and states of self-stress are deduced from the four fundamental subspaces of the kinematic and the equilibrium matrices of the finite unit cell structures, respectively. The generated finite structural matrices are employed to analyze the infinite structural performance of the lattice using the Bloch's theorem. To find macroscopic strain fields generated by periodic mechanisms, the Cauchy-Born hypothesis is adopted. An explicit expression of the microscopic cell element deformations in terms of the macroscopic strain field is generated which is employed to derive the strain energy density of the lattice material. Finally, the strain energy density is used to derive the material macroscopic stiffness properties. The results showed that the proposed lattice topologies can support all macroscopic strain fields. Their stiffness properties are compared with those of lattice materials with hexagonal Bravais symmetry available in literature. The comparison showed that the lattice material with 3~4.6 cell topology has superior isotropic stiffness properties. When compared with the Kagome' lattice, the 3~4.6 lattice generates isotropic stiffness properties, with additional stiffness to mass ratio of 18.5% and 93.2% in the direct and the coupled direct stiffness, respectively. However, it generates reduced shear stiffness to mass ratio by 18.8%.
机译:本文研究了具有六边形Bravais晶格对称性的2D无限晶格材料的静态性能。提出了两种新颖的微观细胞拓扑。第一个拓扑是半规则晶格,具有修改后的Schafli符号3〜4.6,它描述了围绕晶格关节的规则多边形的类型。在这里,3〜4.6表示依次围绕一个节点的四个(4)正三角形(3)和正六边形(6)。第二种拓扑结构是不规则晶格,在此称为双六角三角剖分(DHT)。 晶格材料被认为是销钉连接的微桁架,其中材料微观结构的确定性分析用于区分弯曲为主的行为和拉伸为主的行为。通过线性代数的矩阵方法评估了所提出拓扑的晶胞的有限结构性能。虚拟节点假说的开发是为了对分析进行一般化处理,以解决任何晶格拓扑问题。分别从运动学的四个基本子空间和有限晶胞结构的平衡矩阵推导了塌陷机理和自应力状态。生成的有限结构矩阵用于使用Bloch定理分析晶格的无限结构性能。为了找到由周期性机制产生的宏观应变场,采用柯西-伯恩假设。产生了根据宏观应变场的微观单元元件变形的显式表达,其被用于导出晶格材料的应变能密度。最后,应变能密度用于导出材料的宏观刚度特性。结果表明,所提出的晶格拓扑结构可以支持所有宏观应变场。将其刚度特性与文献中具有六角形Bravais对称性的晶格材料的刚度特性进行了比较。比较表明,具有3〜4.6孔结构的晶格材料具有较好的各向同性刚度性能。与Kagome'晶格相比,3〜4.6晶格具有各向同性的刚度特性,在直接刚度和耦合直接刚度中,刚度质量比分别为18.5%和93.2%。但是,其剪切刚度与质量之比降低了18.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号