首页> 外文会议>2010 18th Biennial University/Government/Industry Micro/Nano Symposium >Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates
【24h】

Novel Configuration for an AC Electroosmotic Pump Driven by AC Voltage with DC Voltage Bias for Bi-Directionality and Increased Volumetric Flow Rates

机译:由交流电压驱动的交流电渗流泵的新型配置,具有直流电压偏置,双向作用和增加的体积流量

获取原文

摘要

This paper discusses the principle of AC electroosmosis and its use to move the bulk of an electrically conducting fluid in a micro-channel as an alternative to mechanical pumping methods. Previous EO driven flow research [1-3] has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC bias when generating the electric field needed to impart electroosmosis within a micro-channel [4]. The analysis was done using COMSOL 3.5a in which previously developed equations [1-2] were embedded and used to evaluate the effects of the frequency of excitation, electrode array geometry, and the AC signal with a DC bias on the flow imparted on an electrically conducting fluid. A single type of fluid was simulated to date. For the AC driven flow, the simulation results indicate the existence of an optimized frequency of excitation and an optimum geometry that lead to the maximum net forward flow of the pump. For a specified set of constants [electric conductivity (2.1 mS/m), lagging electrode width (220 µm), micro-channel height (200 µm), applied AC voltage (0.25 V), electrode array gap (290 µm), and etc], the optimum frequency was 250 Hz and the optimum geometry consisted of a preceding electrode width of 60 μm with an inter electrode gap of 30 μm. No relevant net flows were generated with the asymmetric electrode arrays with a constant magnitude of AC voltage applied to both electrodes. However, superimposing a DC signal over the AC signal on the same asymmetric electrode array lead to a noticeable net forward flow of 18.70 μL/min. Experimental flow measurements were performed on several pump configurations manufactured using typical MEMS fabrication techniques. The experimental results are in good agreement with the simulation data. They confirm that using an asymmetric e--lectrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal. [1] Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. II. A Linear Double-Layer Analysis. Gonzalez, A., et al. 4, April 2000, Physical Review E, Vol. 61, pp. 4019-4028. [2] Novel Systems for Configurable AC Electroosmotic Pumping. Loucaides, N., Ramos, A. and Georghiou, G.E. 2007, Microfluid Nanofluid, Vol. 3, pp. 709-714. [3] Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Ramos, A., et al. 2003, Physical Review E 67 (5-2), pp. 056302/1-056302/11. [4] Biased AC Electroosmosis Micropump for Water Management in PEM Fuel Cells. Islam, N. Boston, Massachusetts, USA : ASME, 2008. 2008 ASME International Mechanical Engineering Congress and Exposition. pp. 1-4.
机译:本文讨论了交流电渗的原理及其在微通道中移动大量导电流体的方法,以替代机械泵送方法。以前的EO驱动流研究[1-3]已经研究了电极不对称性和横向行进波形对电渗泵性能的影响。本文提出了一项分析,以评估在微通道内产生施加电渗作用所需的电场时,将交流信号与直流偏置相结合的效果[4]。使用COMSOL 3.5a进行分析,其中嵌入了以前开发的公式[1-2],并用于评估激励频率,电极阵列几何形状以及带有DC偏置的AC信号对施加在传感器上的流量的影响。导电流体。迄今为止,仅对一种类型的流体进行了模拟。对于交流驱动的流量,仿真结果表明存在最佳的励磁频率和最佳的几何形状,从而导致了泵的最大净正向流量。对于一组指定的常数[电导率(2.1 mS / m),滞后电极宽度(220 µm),微通道高度(200 µm),施加的交流电压(0.25 V),电极阵列间隙(290 µm和等],最佳频率为250 Hz,最佳几何形状由前电极宽度60μm和电极间间隙30μm组成。在两个电极上均施加恒定大小的交流电压的非对称电极阵列未产生相关的净流量。但是,在同一不对称电极阵列上将DC信号叠加在AC信号上会导致18.70μL/ min的显着净正向流量。在使用典型MEMS制造技术制造的几种泵配置上进行了实验流量测量。实验结果与仿真数据吻合良好。他们确认使用非对称电子 -- 与仅用交流信号激励的非对称电极阵列配置所获得的流速相比,由具有直流偏置的交流信号激励的电极阵列可显着提高流速。 [1]微电极上电解质中非均匀交流电场引起的流体流动。二。线性双层分析。 Gonzalez,A。等。 2000年4月4日,《物理评论E》,第一卷。 61,第4019-4028页。 [2]用于可配置交流电渗泵的新型系统。 N.Loucaides,A.Ramos和G.E.Georghiou。 2007,微流体纳米流体,卷。 3,第709-714页。 [3]用交流电压将液体泵送到不对称的微电极对上。拉莫斯,A。,等。 2003年,《物理评论》 E 67(5-2),第056302 / 1-056302 / 11页。 [4]用于PEM燃料电池中水管理的偏置交流电渗析微泵。美国马萨诸塞州,波士顿,伊斯兰堡,美国:ASME,2008年。2008年ASME国际机械工程大会和博览会。第1-4页。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号