首页> 外文会议>2010 IEEE International Conference on Cluster Computing >Cluster versus GPU implementation of an Orthogonal Target Detection Algorithm for Remotely Sensed Hyperspectral Images
【24h】

Cluster versus GPU implementation of an Orthogonal Target Detection Algorithm for Remotely Sensed Hyperspectral Images

机译:遥感高光谱图像正交目标检测算法的聚类与GPU实现

获取原文
获取外文期刊封面目录资料

摘要

Remotely sensed hyperspectral imaging instruments provide high-dimensional data containing rich information in both the spatial and the spectral domain. In many surveillance applications, detecting objects (targets) is a very important task. In particular, algorithms for detecting (moving or static) targets, or targets that could expand their size (such as propagating fires) often require timely responses for swift decisions that depend upon high computing performance of algorithm analysis. In this paper, we develop parallel versions of a target detection algorithm based on orthogonal subspace projections. The parallel implementations are tested in two types of parallel computing architectures: a massively parallel cluster of computers called Thunderhead and available at NASAȁ9;s Goddard Space Flight Center in Maryland, and a commodity graphics processing unit (GPU) of NVidia GeForce GTX 275 type. While the cluster-based implementation reveals itself as appealing for information extraction from remote sensing data already transmitted to Earth, the GPU implementation allows us to perform near real-time anomaly detection in hyperspectral scenes, with speedups over 50x with regards to a highly optimized serial version. The proposed parallel algorithms are quantitatively evaluated using hyperspectral data collected by the NASAȁ9;s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) system over the World Trade Center (WTC) in New York, five days after the attacks that collapsed the two main towers in the WTC complex.
机译:遥感高光谱成像仪器可提供高维数据,在空间和光谱域中均包含丰富的信息。在许多监视应用中,检测对象(目标)是非常重要的任务。尤其是,用于检测(移动或静态)目标或可能扩大其大小的目标(例如火势蔓延)的算法通常需要及时做出响应,以便迅速做出决策,而这取决于算法分析的高计算性能。在本文中,我们开发了基于正交子空间投影的目标检测算法的并行版本。并行实现在两种类型的并行计算体系结构中进行了测试:一个名为Thunderhead的大规模并行计算机集群,可在NASAȁ9上使用;马里兰州的Goddard太空飞行中心,以及NVidia GeForce GTX 275类型的商用图形处理单元(GPU)。尽管基于集群的实现方式显示出对从已经传输到地球的遥感数据中提取信息的吸引力,但GPU的实现方式使我们能够在高光谱场景中执行近实时异常检测,对于高度优化的序列,其速度提高了50倍以上版本。拟议中的并行算法是使用NASA after9收集的高光谱数据进行定量评估的,该爆炸是在两座主塔倒塌的袭击发生后五天,位于纽约世界贸易中心(WTC)的机载可见红外成像光谱仪(AVIRIS)系统在WTC综合大楼中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号