首页> 外文会议>Proceedings of the 2010 Biomedical Sciences and Engineering Conference >6.8: Presentation session: Neuroanatomy, neuroregeneration, and modeling: “GPGPU implementation of a synaptically optimized, anatomically accurate spiking network simulator”
【24h】

6.8: Presentation session: Neuroanatomy, neuroregeneration, and modeling: “GPGPU implementation of a synaptically optimized, anatomically accurate spiking network simulator”

机译:6.8:演讲环节:神经解剖,神经再生和建模:“ GPGPU实现了突触优化,解剖学精确的尖峰网络模拟器”

获取原文

摘要

Simulation of biological spiking networks is becoming more relevant in understanding neuronal processes. An increasing proportion of these simulations focuses on large scale modeling efforts. Unfortunately the size of large networks is often limited by both computational power and memory. Computational power constrains both the maximum number of differential equations and the maximum number of spikes that can be processed per unit time. Memory size limits the maximum number of neurons and synapses that can be simulated. To solve for the computational bottleneck, a neuronal simulator is implemented on a CUDA-based General Purpose Graphic Processing Unit (GPGPU). CUDA provides a C-like environment to harness the computational power of specialized video cards from NVIDIA (these cards provide a computational peak power on single precision floats of 1TFLOPS, at least an order of magnitude higher than the fastest CPU). To solve for the memory bottleneck, a just-in-time synapse storing algorithm is implemented requiring only 4 bytes per synapse. Only the synaptic weight is stored, while both post-synaptic contact and delay are recomputed at run-time. This allows a resource shift from memory to computation which fits with the peculiar GPGPU architecture, where an abundance of compute nodes access the memory via a bandwidth-limited bus. Neurons are represented by a single compartment whose activity is modeled by the Izhikevich formalism. Excitatory synapses are plastic and follow both a spike-timing-dependent plasticity rule and a short term potentiation/depression rule. We are able to simulate networks with up to a million neurons and up to 100 million synapses on a single GPGPU card. Networks of this size cannot be simulated on desktop computers. For smaller networks the speedup obtained is at least of an order of magnitude compared to traditional CPU platform. As an example of possible use of the present work we present preliminary results on the simulation of early stage-- of the visual pathway. In the retina, Retinal Ganglion Cells (RGC) project to the Lateral Geniculate Nucleus (LGN). LGN projects to the cortical area V1. V1 projects back to LGN. The network is represented by 100,000 neurons, 10 million synapses, and 32 different morphological classes with >350 topological projections. Input to the network is provided by current injection in the RGC layer. The RGC layer models midget and parasol ganglion cells (representing 80% of the RGC in primates). Each ganglion type is then subdivided into on- and off-center cells for a total of 4 different types of RGC. Training is performed via natural stimuli while testing is done with vertical and horizontal bars. The network average spiking frequency is within biological limits. Testing performed with both vertical and horizontal bars shows each pattern propagating along the network''s anatomical projections. At each stage the pattern is progressively elaborated and modified. In conclusion we present a novel simulator that is fast, synaptically optimized and anatomically accurate. At an additional cost to an available desktop PC of few hundred dollars we think the GPGPU is an ideal platform to simulate large spiking networks.
机译:在了解神经元过程中,生物加标网络的仿真变得越来越重要。这些仿真中越来越多的比例集中在大规模的建模工作上。不幸的是,大型网络的大小通常受计算能力和内存的限制。计算能力既限制了微分方程的最大数量,也限制了每单位时间可以处理的尖峰的最大数量。内存大小限制了可以模拟的神经元和突触的最大数量。为了解决计算瓶颈,在基于CUDA的通用图形处理单元(GPGPU)上实现了神经元模拟器。 CUDA提供了一个类似于C的环境,以利用NVIDIA专用视频卡的计算能力(这些卡在1TFLOPS的单精度浮点数上提供计算峰值功率,比最快的CPU高至少一个数量级)。为了解决存储瓶颈,实施了即时突触存储算法,每个突触仅需要4个字节。仅存储突触权重,而在运行时重新计算突触后的接触和延迟。这允许资源从内存转移到适合特殊GPGPU架构的计算,在该架构中,大量计算节点通过带宽受限的总线访问内存。神经元由一个单独的隔室代表,其活动由伊契克维奇形式主义建模。兴奋性突触是可塑性的,并遵循依赖于尖峰时间的可塑性规则和短期增强/抑制规则。我们能够在单个GPGPU卡上模拟多达一百万个神经元和多达一亿个突触的网络。这种大小的网络无法在台式计算机上进行模拟。对于较小的网络,与传统的CPU平台相比,获得的提速至少是一个数量级。作为可能使用本工作的一个例子,我们提供了关于早期模拟的初步结果, -- 视觉通路。在视网膜中,视网膜神经节细胞(RGC)投射到外侧膝状核(LGN)。 LGN投影到皮层区域V1。 V1回溯到LGN。该网络由100,000个神经元,1000万个突触和32种不同的形态学类别(> 350个拓扑投影)表示。网络的输入由RGC层中的电流注入提供。 RGC层模拟了小型和阳伞神经节细胞(代表灵长类中RGC的80%)。然后将每种神经节类型细分为中心和偏心单元,总共4种不同类型的RGC。训练是通过自然刺激进行的,而测试则使用垂直和水平条进行。网络平均峰值频率在生物学极限之内。使用垂直条和水平条进行的测试均显示了每个图案都沿着网络的解剖投影传播。在每个阶段,都会逐步完善和修改模式。总之,我们提出了一种新颖的模拟器,该模拟器快速,突触优化并且在解剖学上是准确的。对于可用的几百美元的台式PC,我们认为GPGPU是模拟大型尖峰网络的理想平台,但要额外支付数百美元。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号