首页> 外文会议>International conference on ocean, offshore and arctic engineering;OMAE2009 >Pipe-in-Pipe Substructure Modeling in Deepwater Riser Design Analysis
【24h】

Pipe-in-Pipe Substructure Modeling in Deepwater Riser Design Analysis

机译:深水提升管设计分析中的管内子结构建模

获取原文

摘要

Substructure modeling using pipe-in-pipe (PiP) elements in a finite element program allows representation of dynamic interaction between riser components. This modeling technique is especially useful when it comes to the design of a complex riser system in deepwater applications. In this paper, the ABAQUS finite element program was used to illustrate the substructure models and the results for dynamic analysis of a classic Spar top tension riser (TTR) system in the Gulf of Mexico subjected to a given Hurricane Rita sea state. Nonlinear contacts between the buoyancy can and compliant guides are represented by two different substructure models: compliant guide surface model with friction and frictionless compliant guide spring model. The effects of centerwell hydrodynamic forces were considered. ABAQUS dynamic results were compared between the PiP substructure model and a conventional structure model treating the buoyancy can and the riser inside as a composite beam.The PiP guide friction surface model with centerwell hydrodynamics theoretically is the most representative model for riser analysis. However, the PiP guide spring model is more computationally efficient. It generates comparable guide loads but produces lower riser fatigue damage than the PiP guide friction surface model. The composite beam model leads to guide loads comparable to the PiP model, but cannot be used to determine the spacer loads between the buoyancy can and riser. The composite model also could underestimate riser stresses and riser fatigue damage within the buoyancy can region. The riser guide loads and riser damages from the calculation models without centerwell hydrodynamics are generally higher than those by the same calculation models with such consideration.It was concluded the PiP guide spring model can be used for riser design in lieu of the PiP guide surface model. The additional fatigue damage contribution from axial tension variation due to guide surface friction could be accounted for by adding a damage factor to the total fatigue damage along the riser.
机译:在有限元程序中使用管中管(PiP)元素进行子结构建模可表示立管组件之间的动态相互作用。当涉及深水应用中的复杂立管系统的设计时,此建模技术特别有用。在本文中,使用ABAQUS有限元程序来说明子结构模型以及在给定飓风丽塔海况下墨西哥湾经典Spar顶张力冒口(TTR)系统的动力分析结果。浮力罐和顺应性导向装置之间的非线性接触由两个不同的子结构模型表示:具有摩擦的顺应性导向表面模型和无摩擦顺应性导向弹簧模型。考虑了中心井流体动力的影响。将PiP子结构模型与将浮力罐和立管内部作为复合梁的常规结构模型之间的ABAQUS动力学结果进行了比较。 理论上,具有中心井流体动力学的PiP导向摩擦表面模型是立管分析中最具代表性的模型。但是,PiP导向弹簧模型的计算效率更高。与PiP导向摩擦表面模型相比,它可产生可比的导向载荷,但产生的立管疲劳损伤较小。复合梁模型导致的引导载荷与PiP模型相当,但不能用于确定浮力罐和立管之间的垫片载荷。该复合模型还可能低估了浮力罐区域内的立管应力和立管疲劳损伤。不考虑中心井流体动力学的计算模型中的立管导向载荷和立管损坏通常要比具有相同考虑因素的相同计算模型的立管引导载荷和立管损伤更高。 可以得出结论,PiP导向弹簧模型可以代替PiP导向表面模型用于立管设计。通过将损伤因子添加到沿立管的总疲劳损伤中,可以解决由于导向表面摩擦引起的轴向张力变化而产生的额外疲劳损伤贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号