首页> 外文会议>International conference on nanochannels, microchannels and minichannels;ICNMM2009 >ENTROPY-BASED DESIGN OF LIQUID-REPELLENT NANOCHANNELS DESTINED TO ENERGY ABSORPTION SYSTEMS (EAS)
【24h】

ENTROPY-BASED DESIGN OF LIQUID-REPELLENT NANOCHANNELS DESTINED TO ENERGY ABSORPTION SYSTEMS (EAS)

机译:面向能量吸收系统(EAS)的液态纳米管的基于熵的设计

获取原文
获取外文期刊封面目录资料

摘要

Entropy production is a key parameter to evaluate the maximal efficiency of engineering systems. Recently, liquid penetration/exudation in/from non-wetted nanoporous solids was employed to develop ecological energy absorption systems (EAS). Dissipation is based on the well-known fact that external work must be done to spread a liquid on a lyophobic surface. Minimization of the entropy production is usually required to obtain high-efficiency engineering systems. However, enhancement of the EAS nano-damping ability requires oppositely maximization of the entropy generated through interfacial, frictional and thermal instabilities. A model of the entropy production during water flow inside of a liquid-repellent silica nanopore is proposed. A mixture of hydrophobized nanoporous silica and water is introduced inside of a compression-decompression chamber. Using a thermo-camera, the temperature distribution on the external surface of the test chamber is recorded versus the working time and the positions of main heat sources are identified. Such experiments allow determination of the overall dissipation, generated heat, and the heat flux at the wall of silica nanochannel. Then, the test rig is introduced inside of an incubator that allows temperature adjustment in the range 0~50 °C and the thermal effects on the hysteresis and damping performances are evaluated. From such tests one determines the variation of the solid surface tension on the nanochannel wall versus temperature. Entropy (heat) production in the nanochannel is estimated and compared with experimental data to validate the proposed model.
机译:熵生产是评估工程系统最大效率的关键参数。最近,使用非湿润的纳米多孔固体中的液体穿透/渗出来发展生态能量吸收体系(EA)。耗散基于众所周知的事实,即必须进行外部工作以在冻干表面上涂抹液体。最小化熵产生通常需要获得高效工程系统。然而,EAS纳米阻尼能力的提高需要通过界面,摩擦和热稳定性产生的熵最大化。提出了一种在液体排斥式二氧化硅纳米孔内部水流动过程中的熵产生模型。将疏水化的纳米多孔二氧化硅和水的混合物引入压缩减压室内。使用热敏摄像机,记录测试室的外表面上的温度分布与工作时间,识别主热源的位置。这些实验允许确定硅纳米烷基壁壁的总耗散,产生的热量和热通量。然后,在培养箱内引入试验台,允许温度调节在0〜50℃的范围内,并且评估对滞后性和阻尼性能的热效应。从这种测试中,一个决定纳米槽壁与温度上的固体表面张力的变化。估计纳米通道中的熵(热量)产生并与实验数据进行比较以验证所提出的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号