首页> 外文会议>International astronautical congress;IAC 2009 >Multidisciplinary Design Optimization Models and Software Tool for Hypersonic Flight Vehicle
【24h】

Multidisciplinary Design Optimization Models and Software Tool for Hypersonic Flight Vehicle

机译:高超音速飞行器的多学科设计与优化模型及软件工具

获取原文

摘要

The interdisciplinary tight-coupled aspect of air-breathing Hypersonic Flight Vehicle (HFV) necessitates truly Multidisciplinary Design and Optimization (MDO). In this research, MDO problem of a typical scramjet-based HFV configuration was investigated. Six critical disciplines including Geometry, Aerodynamics, Propulsion, Trajectory, Structure, and Thermal Protection System (TPS), were considered. Disciplinary analysis models of middle fidelity were constructed. From the viewpoint of system engineering, MDO models of HFV were created. By introducing the conceptions of "Shared variable", "Coupled variable", "Common Constraints", "Conflict Constraints", "Common Objectives" and "Conflict objectives", the multidisciplinary optimization model of HFV was formulated based on the design description of each discipline. By mapping interface of disciplines, Multi-Disciplinary Analysis (MDA) model was created. To support this MDO process, a CAD-based software tool named MDOT-HFV was developed, which is composed of five components: (a) Parametric Geometry Modeling (PGM) module; (b) Disciplinary analysis codes, corresponding to each discipline; (c) Integration Module (IM) and Data Management Module (DMM), which controls interaction between analysis codes and PGM; (d) Graphical User Interfaces (GUI); (e) Optimization algorithm library. Ink test example shows that after optimization, the performance of HFV can be improved about 10% .
机译:空气呼吸高超音速飞行器(HFV)的跨学科紧密耦合方面要求真正的多学科设计和优化(MDO)。在这项研究中,研究了典型的基于超燃冲压发动机的HFV配置的MDO问题。考虑了六个关键学科,包括几何,空气动力学,推进,弹道,结构和热防护系统(TPS)。构建了中等逼真度的学科分析模型。从系统工程的角度,创建了HFV的MDO模型。通过介绍“共享变量”,“耦合变量”,“共同约束”,“冲突约束”,“共同目标”和“冲突目标”的概念,基于每个变量的设计描述,建立了HFV的多学科优化模型。纪律。通过映射学科界面,创建了多学科分析(MDA)模型。为了支持此MDO流程,开发了一个名为CADOT-HFV的基于CAD的软件工具,该工具包含五个组件:(a)参数几何建模(PGM)模块; (b)与每个学科相对应的学科分析代码; (c)集成模块(IM)和数据管理模块(DMM),控制分析代码和PGM之间的相互作用; (d)图形用户界面(GUI); (e)优化算法库。墨水测试示例显示,经过优化,HFV的性能可以提高约10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号