首页> 外文会议>PVP2008;ASME pressure vessels and piping conference >JEDI: A CODE FOR THE CALCULATION OF J FOR CRACKS INSERTED IN INITIAL STRAIN FIELDS AND THE ROLE OF J AND Q IN THE PREDICTION OF CRACK EXTENSION AND FRACTURE
【24h】

JEDI: A CODE FOR THE CALCULATION OF J FOR CRACKS INSERTED IN INITIAL STRAIN FIELDS AND THE ROLE OF J AND Q IN THE PREDICTION OF CRACK EXTENSION AND FRACTURE

机译:杰迪(Jedi):计算插入初始应变场中的裂纹的J的代码,以及J和Q在预测裂纹扩展和断裂中的作用

获取原文

摘要

When crack tip constraint is high, the crack tip contour integral J characterises the asymptotic stress, strain and displacement fields of a stationary crack in an elastic-plastic material. In other cases, the crack tip fields can be related to J and a second parameter Q which governs the crack tip constraint. These observations are the basis of J-Q fracture mechanics assessments. In the most usual procedure J is compared to an effective, constraint-corrected fracture toughness J_c which is derived from Q and the fracture toughness of the material. The difference J_c - J is a measure of the margin of safety.The assessment procedure assumes there are no initial inelastic strains in the component or the fracture toughness specimen prior to introducing the crack and subsequent loading. However, plant components may contain inelastic strains prior to cracking arising from welding and other manufacturing or fit-up processes. This initial strain field can be established by a finite element analysis that simulates the welding and/or manufacture sequence. Weld residual stresses develop due to the accumulation of incompatible, inelastic strains, including thermal, plastic and transformation strains in the material.If a crack is inserted into an initial strain field, a procedure is required to calculate J by analysis of the resulting crack tip fields. Moreover, for the fracture assessment method to remain valid, it must be demonstrated that the values of J and Q continue to govern the onset of crack extension or fracture so that a meaningful comparison of J with J_c can be made.This paper describes a domain integral for calculating J when inelastic strains exist prior to cracking, and its implementation in the JEDI computer code. The code is used to determine J for a crack inserted into a three-point bend specimen containing an initial inelastic strain field representative of one that might develop during welding. The extent to which the crack tip stress field is characterised by Jand Q is examined by comparing it to the field for high constraint, small-scale yielding conditions.
机译:当裂纹尖端约束较高时,裂纹尖端轮廓积分J表征弹塑性材料中固定裂纹的渐近应力,应变和位移场。在其他情况下,裂纹尖端字段可以与J和控制裂纹尖端约束的第二参数Q相关。这些观察是J-Q断裂力学评估的基础。在最常用的过程中,将J与有效的,经约束校正的断裂韧性J_c进行比较,后者由Q和材料的断裂韧性得出。差J_c-J是安全裕度的量度。 评估程序假定在引入裂纹和随后的载荷之前,组件或断裂韧性​​试样中没有初始非弹性应变。但是,在焊接和其他制造或装配过程产生裂纹之前,工厂组件可能会包含非弹性应变。可以通过模拟焊接和/或制造顺序的有限元分析来建立该初始应变场。焊接残余应力是由于不相容的非弹性应变(包括材料中的热应变,塑性应变和相变应变)的积累而产生的。 如果将裂纹插入初始应变场,则需要通过分析所得的裂纹尖端场来计算J的过程。此外,为了使断裂评估方法保持有效,必须证明J和Q的值继续控制裂纹扩展或断裂的发生,以便可以对J与J_c进行有意义的比较。 本文描述了在裂纹之前存在非弹性应变时用于计算J的域积分,以及在JEDI计算机代码中的实现。该代码用于确定插入三点弯曲试样的裂纹的J值,该试样包含代表焊接过程中可能出现的初始非弹性应变场的初始非弹性应变场。裂纹尖端应力场用J表示的程度 通过与高约束,小规模屈服条件的现场进行比较来检验Q。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号