首页> 外文会议>HT2008;ASME summer heat transfer conference >COMPUTATION OF NITROGEN OXIDES IN RADIANT POROUS BURNER FLOWS
【24h】

COMPUTATION OF NITROGEN OXIDES IN RADIANT POROUS BURNER FLOWS

机译:辐射多孔燃烧器流中氮氧化物的计算

获取原文

摘要

The present paper is concerned with the numerical computation of flow, heat transfer and chemical reactions in porous burners. One of the important features of porous burners is their presumed low levels of nitrogen oxides. In the present work, the computed NO_x is compared with similar conventional premixed burners and measured nitrogen oxides in porous burners. In order to accurately compute the nitrogen oxides levels in porous burners, both prompt and thermal NO_x mechanisms are included. In the present work, the porous burner species mass fraction source terms are computed from an 'extended' reaction mechanism, controlled by chemical kinetics of elementary reactions. The porous burner has mingled zones of porousonporous reacting flow, i.e. the porosity is not uniform over the entire domain. Finite-volume equations are obtained by formal integration over control volumes surrounding each grid node. Up-wind differencing is used to ensure that the influence coefficients are always positive to reflect the real effect of neighboring nodes on a typical central node. Finite-difference equations are solved iteratively for velocity components, pressure correction, gas enthalpy, species mass fractions and solid matrix temperature. The grid used to solve the solid energy equation is extended inside the zero-porosity solid annular wall of the burner porous disk. This was found useful for computing the solid wall temperature with high accuracy. A two-dimensional, discrete-ordinate, model is used for the computation of thermal radiation emitted from the solid matrix. The porous burner uses a premixed CH4-air mixture, while its radiating characteristics are studied numerically under equivalence ratio ranging from 0.5 to 0.8. Twenty-one species are included, involving 55 chemical reactions. The computedsolid wall temperature profiles are compared with experimental data of similar porous burners. The obtained agreement is fairly good. The present numerical results show that as the equivalent ratio decreases, the reaction zone moves downstream. Moreover, as the flame speed increases, the NO_X mole fraction increases. Some reacting species, such as H_2O, CO_2 and H_2 increase steadily inside the reaction zone; they stay appreciable in the combustion products. However, unstable products, such as HO_2, H_2O_2 and CH_3, first increase in the preheating region of the reaction zone; they are then consumed in the remaining part of the reaction zone. The numerical results show that most of the formed NO_x is composed of nitric oxide. The velocity and temperature profiles were accurately predicted using a grid of 80×80 while the nitrogen oxides were computed accurately utilizing a finer grid of 160×160.
机译:本文涉及多孔燃烧器中流动,传热和化学反应的数值计算。多孔燃烧器的重要特征之一是其氮氧化物含量低。在本工作中,将计算出的NO_x与类似的传统预混燃烧器进行比较,并在多孔燃烧器中测量氮氧化物的含量。为了准确计算多孔燃烧器中的氮氧化物含量,同时包括了瞬态和热态NO_x机制。在目前的工作中,多孔燃烧器物质质量分数的源项是根据基本反应的化学动力学控制的“扩展”反应机理计算的。多孔燃烧器具有多孔/无孔反应流的混合区域,即,孔隙率在整个区域上是不均匀的。有限体积方程是通过对每个网格节点周围的控制体积进行形式积分获得的。迎风差异用于确保影响系数始终为正,以反映典型中央节点上相邻节点的实际效果。迭代求解速度差,压力校正,气体焓,物质质量分数和固体基质温度的有限差分方程。用于解决固体能量方程的网格在燃烧器多孔盘的零孔隙率固体环形壁内延伸。发现这对于以高精度计算固体壁温度是有用的。二维离散坐标模型用于计算从固体基质发出的热辐射。多孔燃烧器使用预混合的CH4空气混合物,同时在等当比范围从0.5到0.8的范围内对它的辐射特性进行了数值研究。其中包括21种,涉及55个化学反应。计算的 将固体壁温曲线与类似的多孔燃烧器的实验数据进行了比较。所获得的协议是相当不错的。目前的数值结果表明,当量比降低时,反应区向下游移动。此外,随着火焰速度增加,NO_X摩尔分数增加。在反应区内,一些反应物,如H_2O,CO_2和H_2稳定增加。它们在燃烧产物中的含量仍然很高。然而,不稳定的产物,例如HO_2,H_2O_2和CH_3,首先在反应区的预热区增加;然后它们在反应区的其余部分被消耗掉。数值结果表明,大部分形成的NO_x由一氧化氮组成。使用80×80的网格可以准确地预测速度和温度分布,而使用160×160的更精细的网格可以精确地计算氮氧化物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号