首页> 外文会议>ASME Fluids Engineering Division summer conference;FEDSM2009 >MODELING OF IMMISCIBLE, TWO-PHASE FLOWS IN A NATURAL ROCK FRACTURE
【24h】

MODELING OF IMMISCIBLE, TWO-PHASE FLOWS IN A NATURAL ROCK FRACTURE

机译:天然岩石裂隙中不相交两相流的模拟

获取原文

摘要

One potential method of geologically sequestering carbon dioxide (CO_2) is to inject the gas into brine-filled, subsurface formations. Within these low-permeability rocks, fractures exist that can act as natural fluid conduits. Understanding how a less viscous fluid moves when injected into an initially saturated rock fracture is important for the prediction of CO_2 transport within fractured rocks.Our study examined experimentally and numerically the motion of immiscible fluids as they were transported through models of a fracture in Berea sandstone. The natural fracture geometry was initially scanned using micro-computerized tomography (CT) at a fine volume-pixel (voxel) resolution by Karpyn et al. [1]. This CT scanned fracture was converted into a numerical mesh for two-phase flow calculations using the finite-volume solver FLUENT? and the volume-of-fluid method. Additionally, a translucent experimental model was constructed using stereolithography.The numerical model was shown to agree well with experiments for the case of a constant rate injection of air into the initially water-saturated fracture. The invading air moved intermittently, quickly invading large-aperture regions of the fracture. Relative permeability curves were developed to describe the fluid motion. These permeability curves can be used in reservoir-scale discrete fracture models for predictions of fluid motion within fractured geological formations. The numerical model was then changed to better mimic the subsurface conditions at which CO_2 will move into brine saturated fractures. The different fluid properties of themodeled subsurface fluids were shown to increase the amount of volume the less-viscous invading gas would occupy while traversing the fracture.
机译:地质隔离二氧化碳(CO_2)的一种潜在方法是将气体注入盐水填充的地下地层中。在这些低渗透率的岩石中,存在可以充当天然流体管道的裂缝。了解低粘度流体在注入到最初的饱和岩石裂缝中时是如何运动的,这对于预测裂缝岩石中的CO_2传输非常重要。 我们的研究在实验和数值上检查了不混溶流体在通过Berea砂岩的裂缝模型中传输时的运动。最初,由Karpyn等人使用微计算机断层扫描(CT)以精细的体积像素(voxel)分辨率扫描自然裂缝的几何形状。 [1]。使用有限体积求解器FLUENT?将此CT扫描的裂缝转换为数值网格,以进行两相流动计算。和流体体积法。此外,使用立体光刻技术构建了半透明的实验模型。 对于以恒定速率将空气注入最初的水饱和裂缝中的情况,数值模型显示出与实验非常吻合。侵入的空气断断续续地移动,迅速侵入裂缝的大口径区域。制定了相对渗透率曲线来描述流体运动。这些渗透率曲线可用于油藏规模的离散裂缝模型中,以预测裂缝地质地层内的流体运动。然后更改了数值模型,以更好地模拟CO_2将进入盐水饱和裂缝的地下条件。不同的流体特性 模拟的地下流体显示出在穿越裂缝时增加了粘度较小的侵入性气体所占据的体积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号