【24h】

MODE-I CRACK CONTROL BY SMA FIBER WITH A SPECIAL CONFIGURATION

机译:具有特殊配置的SMA光纤的MODE-I裂纹控制

获取原文

摘要

Crack propagation in solid members is an important reason for structure failure. In recent years, many research interests are focused on intelligent control of crack propagation. With the rise in temperature, contraction of prestrained shape memory alloy (SMA) fiber embedded in matrix makes retardation of crack propagation possible. However, with the rise in temperature, separation of SMA fiber from matrix is inevitable. This kind of separation weakens effect of SMA fiber on crack tip. To overcome de-bonding of shape memory alloy (SMA) fiber from matrix, a knot is made on the fiber in this paper. By shape memory effect with the rise in temperature, the knotted SMA fiber generates a couple of recovery forces acting on the matrix at the two knots. This couple of recovery forces may restrain opening of the mode-I crack. Based on Tanaka constitutive law on SMA fiber and complex stress function near an elliptic hole under a point load, a theoretical model on mode-I control is proposed. An analytical expression of relation between stress intensity factor (SIF) of mode-I crack closure and temperature is got. Simulation results show that stress intensity factor of mode-I crack closure decreases obviously with the rise in temperature higher than the austenite start temperature of SMA fiber, and that there is an optimal position for SMA fiber to restrain crack opening, which is behind the crack tip. Therefore the theoretical model supports that prestrained SMA fiber with knots in martensite can be used to control mode-I crack opening effectively because de-bonding between fiber and matrix is eliminated. Specimen of epoxy resin embedded with knotted SMA fiber can be made in experiment and is useful to an analytical study. However, in practical point of view, SMA fiber should be embedded in engineering structure material such as steel, aluminum, etc. The embedding process in these matrix materials should be studied systematically in the future.
机译:固体构件中的裂纹扩展是结构破坏的重要原因。近年来,许多研究兴趣集中在裂纹扩展的智能控制上。随着温度的升高,嵌入基体中的预应变形状记忆合金(SMA)纤维的收缩使裂纹扩展的延迟成为可能。但是,随着温度的升高,SMA纤维与基质的分离是不可避免的。这种分离会削弱SMA纤维对裂纹尖端的影响。为了克服形状记忆合金(SMA)纤维与基体的脱粘现象,本文在纤维上打了一个结。通过随着温度升高的形状记忆效应,打结的SMA纤维产生两个恢复力,作用在两个打结处的基质上。这对恢复力可能会限制I型裂纹的打开。基于Tanaka的SMA纤维本构定律和点载荷作用下椭圆孔附近的复应力函数,提出了I型控制的理论模型。得到了Ⅰ型裂纹闭合的应力强度因子(SIF)与温度之间关系的解析表达式。仿真结果表明,随着温度的升高,比SMA纤维的奥氏体起始温度高,I型裂纹闭合的应力强度因子明显降低,并且SMA纤维存在一个最佳的位置来抑制裂纹的开裂,该位置位于裂纹的后面。小费。因此,理论模型支持马氏体中带有节结的预应力SMA纤维可用于有效控制I型裂纹的开裂,因为消除了纤维与基体之间的脱胶现象。可以在实验中制备嵌入有打结的SMA纤维的环氧树脂样品,这对分析研究很有用。然而,从实用的角度来看,SMA纤维应嵌入到钢,铝等工程结构材料中。将来,应对这些基质材料中的包埋工艺进行系统的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号