首页> 外文会议>European corrosion congress;EUROCORR 2009 >New design of a creep-rupture facility for tests in heavy liquid metals
【24h】

New design of a creep-rupture facility for tests in heavy liquid metals

机译:用于重金属测试的蠕变断裂装置的新设计

获取原文
获取外文期刊封面目录资料

摘要

Current nuclear research and development is focused on innovative strategies for safe and economic new reactor designs in optimised processes for nuclear waste management. First and foremost this promotes concepts which consider the minimization of e.g. minor actinides in spent nuclear fuel by transmutation of high level radioactive waste with high energy neutrons. Therefore, heavy liquid metals (HLMs) have gained immense interest as coolant and target in subcritical accelerator driven systems (ADS) and also as coolant in Gen IV-type lead-cooled fast reactors. The advantage of HLMs is their high thermal conductivity and their relative safety in case of an accident. Nevertheless, high operating temperatures together with a corrosive environment induce liquid metal embrittlement, corrosion, and erosion as well as pronounced irradiation damage. The combination of these crucial operating conditions is the motivation for the development of new structural materials for construction parts of such reactors.A goal of our research is to investigate the creep-rupture behavior of envisaged structural materials as well as to predict their service life-time under extremely corrosive conditions in oxygen-controlled liquid lead at elevated temperatures (>600°C). Furthermore, based on the results for short- and long-termed experiments under high and low stress conditions, respectively, it is expected to evaluate the margin factor of the corrosion process under creep conditions at elevated temperatures. In this study a new creep-rupture facility for tests in oxygen containing molten lead at elevated temperatures called CRISLA (Creep-Rupture in Stagnant Lead Alloys) which was designed in our laboratory is presented. Experimental results with a martensitic (DIN 1.4914) and an austenitic (DIN 1.4571) steel obtained in air at 650°C are confirming the operating efficiency of the facility. Furthermore, tests for the stable operating conditions, especially for oxygen-controlled lead, have been carried out.
机译:当前的核研究与开发侧重于在优化的核废料处理过程中安全,经济地设计新反应堆的创新战略。首先,最重要的是,这提倡了考虑例如最小化的概念。通过用高能中子trans变高放射性废物,使乏核燃料中的微量act系元素。因此,重液态金属(HLM)作为亚临界加速器驱动系统(ADS)的冷却剂和目标以及第四代铅型快冷反应堆的冷却剂引起了极大的兴趣。 HLM的优点是它们的高导热性以及在发生事故时的相对安全性。然而,较高的工作温度和腐蚀性环境会引起液态金属脆化,腐蚀和腐蚀以及明显的辐射损伤。这些关键操作条件的结合是为这种反应堆的建筑部件开发新的结构材料的动力。 我们研究的目标是研究所设想的结构材料的蠕变断裂行为,并预测其在高温下(> 600°C)的氧气控制的液态铅在极强腐蚀条件下的使用寿命。此外,基于分别在高应力和低应力条件下的短期和长期实验的结果,预期将评估在高温蠕变条件下腐蚀过程的余量因子。在这项研究中,我们在实验室中设计了一种新的蠕变断裂设备,用于在高温下测试含氧熔融铅中的氧,称为CRISLA(停滞铅合金中的蠕变断裂)。在650°C的空气中获得的马氏体(DIN 1.4914)和奥氏体(DIN 1.4571)钢的实验结果证实了该设备的运行效率。此外,已经进行了用于稳定运行条件的测试,尤其是对于氧气控制的铅。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号