首页> 外文会议>Offshore technology conference 2009 (OTC 09) >New Inflow Control Device Reduces Fluid Viscosity Sensitivity and Maintains Erosion Resistance
【24h】

New Inflow Control Device Reduces Fluid Viscosity Sensitivity and Maintains Erosion Resistance

机译:新型流入控制装置可降低流体粘度敏感性并保持抗侵蚀性

获取原文
获取外文期刊封面目录资料

摘要

In long horizontal wells, production rate is typically higher at the heel of the well than at the toe. The resulting imbalanced production profile may cause early water or gas breakthrough into the wellbore. Once coning occurs, well production may be severely decreased due to limited flow contribution from the toe. To eliminate this imbalance, inflow control devices (ICDs) are placed in each screen joint to balance the production influx profile across the entire lateral length and to compensate for permeability variation. Pressure drop in an ICD is created through either restriction or friction mechanisms. Restriction mechanisms rely on a contraction of the fluid flow path to generate an instantaneous pressure drop, resulting in higher velocities, and are thus more prone to long-term erosion damage as well as plugging during mud flowback. A restriction device, however, is less sensitive to viscosity properties of the fluid. A frictional device, which creates a pressure drop over a distributed length, is less likely to erode due to lower fluid velocities, but is more sensitive to viscosity changes. Viscosity insensitivity is desired to minimize preferential water flow whenever water breaks through into the well. This paper will detail the development of a new hybrid design concept that uses the best features of the restricting and friction designs, while minimizing the less desirable characteristics. Because these ICDs are permanent downhole components, their long-term reliability is imperative, and these new developments will improve their resistance to erosion and their ability to effectively balance inflow. Conceptual fluid dynamics analysis was used extensively to characterize the new design, along with actual full-scale flow testing.
机译:在较长的水平井中,井底的生产率通常高于脚趾。导致的不平衡生产状况可能导致水或气体提前渗透到井眼中。一旦发生锥体,由于脚趾的流量贡献有限,井的产量可能会严重下降。为了消除这种不平衡,将流入控制装置(ICD)放置在每个筛管接头中,以平衡整个横向长度上的生产流入剖面并补偿渗透率变化。 ICD中的压降是通过限制或摩擦机制产生的。限制机构依靠流体流动路径的收缩来产生瞬时压降,从而导致较高的速度,因此更容易受到长期侵蚀的损害以及泥浆倒流时的堵塞。但是,限制装置对流体的粘度特性不太敏感。在较低的流体速度下,在整个分布长度上产生压降的摩擦装置不太可能受到侵蚀,但对粘度变化更为敏感。每当水渗入井中时,都希望使用粘度不敏感性来最大程度地减少优先的水流。本文将详细介绍一种新的混合动力设计概念的开发过程,该概念利用了限制和摩擦设计的最佳功能,同时最大限度地减少了不太理想的特征。由于这些ICD是永久性的井下组件,因此它们的长期可靠性势在必行,而这些新进展将提高其抗侵蚀能力以及有效平衡流入量的能力。广泛使用概念流体动力学分析来表征新设计以及实际的满量程流量测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号