首页> 外文会议>ASME turbo expo >Nox REDUCTION BY AIR-SIDE VS. FUEL-SIDE DILUTION IN HYDROGEN DIFFUSION FLAME COMBUSTORS
【24h】

Nox REDUCTION BY AIR-SIDE VS. FUEL-SIDE DILUTION IN HYDROGEN DIFFUSION FLAME COMBUSTORS

机译:通过空侧VS减少Nox。氢扩散火焰燃烧器的燃料侧稀释

获取原文
获取外文期刊封面目录资料

摘要

Lean-Direct-Injection (LDI) combustion is being considered at NETL as a means to attain low Nox emissions in a high-hydrogen gas turbine combustor. Integrated Gasification Combined Cycle (IGCC) plant designs can create a high-hydrogen fuel using a water-gas shift reactor and subsequent CO_2 separation. The IGCC's air separation unit produces a volume of N_2 roughly equivalent to the volume of H_2 in the gasifier product stream, which can be used to help reduce peak flame temperatures and Nox in the diffusion flame combustor. Placement of this diluent in either the air or fuel streams is a matter of practical importance, and has not been studied to date for LDI combustion. The current work discusses how diluent placement affects diffusion flame temperatures, residence times, and stability limits, and their resulting effects on Nox emissions.From a peak flame temperature perspective, greater Nox reduction should be attainable with fuel dilution rather than air or independent dilution in any diffusion flame combustor with excess combustion air, due to the complete utilization of the diluent as a heat sink at the flame front, although the importance of this mechanism is shown to diminish as flow conditions approach stoichiometric proportions. For simple LDI combustor designs, residence time scaling relationships yield a lower Nox production potential for fuel-side dilution due to its smaller flame size, whereas air-dilution yields a larger air entrainment requirement and a subsequently larger flame, with longer residence times and higher thermal Nox generation.For more complex staged-air LDI combustor designs, dilution of the primary combustion air at fuel-rich conditions can result in full utilization of the diluent for reducing the peak flame temperature, while also controlling flame volume and residence time for Nox reduction purposes. However, differential diffusion of hydrogen out of a diluted hydrogenitrogen fuel jet can create regions of higher hydrogen content in the immediate vicinity of the fuel injection point than can be attained with dilution of the air stream, leading to increased flame stability. By this mechanism, fuel-side dilution extends the operating envelope to areas with higher velocities in the experimental configurations tested, where faster mixing rates further reduce flame residence times and Nox emissions. Strategies for accurate CFD modeling of LDI combustors' stability characteristics are also discussed.
机译:NETL正在考虑将稀薄直接喷射(LDI)燃烧作为在高氢燃气轮机燃烧室中实现低NOx排放的一种手段。整体气化联合循环(IGCC)工厂的设计可以使用水煤气变换反应器和随后的CO_2分离来产生高氢燃料。 IGCC的空气分离装置产生的N_2体积大致等于气化炉产物流中H_2的体积,可用于帮助降低峰值火焰温度和扩散火焰燃烧器中的NOx。这种稀释剂在空气流或燃料流中的放置具有实际重要性,到目前为止,尚未进行LDI燃烧的研究。当前的工作讨论了稀释剂的放置如何影响扩散火焰的温度,停留时间和稳定性极限,以及它们对NOx排放的影响。 从峰值火焰温度的角度来看,由于稀释剂可以完全用作火焰前沿的散热器,尽管通过稀释燃料而不是空气或在任何带有过量燃烧空气的扩散火焰燃烧器中进行独立稀释,都应该实现更大的NOx减少,尽管随着流动条件接近化学计量比例,这种机理的重要性逐渐降低。对于简单的LDI燃烧器设计,停留时间比例关系由于其较小的火焰尺寸而在燃料侧稀释时产生较低的NOx产生潜力,而空气稀释产生更大的空气夹带要求和随后更大的火焰,停留时间更长且更高产生热氮氧化物。 对于更复杂的分级空气LDI燃烧器设计,在富燃料条件下稀释一次燃烧空气可导致稀释剂的充分利用,以降低峰值火焰温度,同时还出于减少NOx的目的控制火焰量和停留时间。但是,氢气从稀释的氢气/氮气燃料射流中扩散出来的差异会产生更高的区域 燃料喷射点附近的氢含量比通过稀释空气流所能达到的高,从而提高了火焰稳定性。通过这种机制,在测试的实验配置中,燃料侧稀释可将运行范围扩展到具有较高速度的区域,在该区域中更快的混合速率可进一步减少火焰停留时间和NOx排放。还讨论了对LDI燃烧器的稳定性特征进行精确CFD建模的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号