首页> 外文会议>ICAPP 2008;International conference on advances in nuclear power plants >Passing of Reactors WWER-1000 of NPP Kozloduy - Bulgaria to Extended Fuel Cycle Operation (Implementation of ~(235)U Higher Enriched Fuel)
【24h】

Passing of Reactors WWER-1000 of NPP Kozloduy - Bulgaria to Extended Fuel Cycle Operation (Implementation of ~(235)U Higher Enriched Fuel)

机译:NPP Kozloduy-保加利亚的反应堆WWER-1000通过延长燃料循环运行(〜(235)U高浓燃料的实现)

获取原文

摘要

On the base of evaluation of the experience by burnup extensions in PWRs it is concluded that the higher duty cores are always attended with the onset of sub-cooled nucleate boiling (SNB) on the fuel cladding surfaces and the initial excess reactivity of core. The main consequences of these basic factors are the modifications of chemical/electrochemical environments of the nuclear fuel cladding- and reactor coolant system- surfaces.An explicit result of the synergic impact of the boiling- and water radiolysis- processes on the Pressurized Water Reactor fuel cladding surface areas is the change of fuel cladding chemical environment from reducing (hydrogen rich) to oxidizing, which is the most important, with dramatically consequences, change. These circumstances determined the requirement that the nuclear fuel cladding materials in PWRs operating with SNB, should have high corrosion resistance by oxidizing conditions.By the implementation only of dissolved in coolant boric acid as a neutron absorber, the critical boron concentration in coolant increases significantly when passing to burnup extension. The enough boric acid neutralization requires the corresponding increases of the coolant alkalizing reagent concentrations necessary for the keeping of coolant pH_(300) above 6.9. Usually, these concentrations are extremely high and are not allowed. One effective way for the resolution of this problem is the application of solid burnable absorbers as Gd_2O_3 integrated in UO_2 fuel which allows the boric acid coolant concentrations in the required limits to be kept.The above mentioned considerations have been taken into account by the passing to burnup extension of WWER-1000 Units in NPP Kozloduy - Bulgaria. This transition of WWER-1000 Units in Bulgarian Kozloduy NPP has been realized in accordance with a coordinated program between Kozloduy NPP and JSC TVEL (Russia) through step by step implementation of a new type of advanced fuel assemblies (TVSA). Some important features of these advanced fuel assemblies are: burnable absorber (Gd) integrated in the fuel - (UO_2 - Gd_2O_3fuel), increased burnup up to 55 MWd/kg U in assemblies, possibility to realize full 4-year fuel cycle. The step-by-step transition process is foreseen to be completed in the frame of five fuel cycles (from 12-th to 16-th of Unit 5) between years 2005-2010.The objects of these investigations are the water chemistry aspects of the step-by-step process of introduction of burnup extension through TVSA application in Unit5 of Kozloduy NPP.As water chemistry data with an exceptionally importance were evaluated the data for the coolant critical boron concentrations at Beginning of Cycle (BOC) by Hot Full Power state (HFP), and the necessary total alkalizing agent concentrations (mainly potassium hydroxide) which ensure the high temperature coolant pH values: between pH_(300)=7.0 and pH_(300)-7.2. The reason for this selection is the recent NPP Kozloduy water chemistry primary circuit guidelines, which keeping is the guarantee for the minimizing of constructional materials corrosion processes in primary circuit (mainly fuel element claddings and steam generators tubing) and ensures the real limitation of the fuel cladding depositions (to 10 /μm clad corrosion product thickness).The obtained plant data of 12-th, 13-th and 14-th fuel cycles show that the coolant pH_(300) values above 7.0 are ensured by HFP states with dosing in the coolant of potassium hydroxide below 0.45mmol/kg. The activated coolant corrosion products during the start up , all operation period and shutdown are followed.
机译:根据对PWR燃尽扩展的经验进行评估,得出的结论是,较高功率的堆芯总是伴随着燃料包壳表面过冷核沸腾(SNB)的出现以及堆芯的初始过度反应。这些基本因素的主要后果是改变了核燃料包壳和反应堆冷却剂系统表面的化学/电化学环境。 沸腾和水的辐射分解过程对压水堆燃料包壳表面积产生协同影响的一个明显结果是燃料包壳化学环境从还原(富氢)到氧化的变化,这是最重要的,而且变化显着。后果,改变。这些情况决定了在使用SNB的压水堆中,核燃料包壳材料应具有通过氧化条件具有高耐腐蚀性的要求。 通过仅将溶解在冷却剂硼酸中的溶液用作中子吸收剂,冷却剂中的临界硼浓度在达到燃耗扩展时会显着增加。足够的硼酸中和需要相应增加冷却剂碱化试剂的浓度,以使冷却剂pH_(300)保持在6.9以上。通常,这些浓度非常高,因此是不允许的。解决此问题的一种有效方法是应用固体可燃吸收剂,例如将Ud_2燃料中集成的Gd_2O_3,这可以使硼酸冷却剂的浓度保持在所需的限值内。 通过将NPP Kozloduy-保加利亚的WWER-1000装置的燃耗扩展考虑在内,已考虑到上述考虑因素。保加利亚Kozloduy NPP的WWER-1000装置的这种过渡是根据Kozloduy NPP和JSC TVEL(俄罗斯)之间的协调计划,通过逐步实施新型先进燃料组件(TVSA)来实现的。这些先进燃料组件的一些重要特征是:集成在燃料中的可燃吸收器(Gd)-(UO_2-Gd_2O_3燃料),组件中的燃耗增加至55 MWd / kg U,有可能实现完整的4年燃料循环。逐步过渡过程预计将在2005-2010年之间的5个燃料循环(5号机组的第12至第16个)的框架内完成。 这些研究的目的是逐步分析通过TVSA在Kozloduy NPP的Unit5中引入燃尽扩展的逐步过程的水化学方面。 由于评估了水化学数据非常重要,因此通过热全功率状态(HFP)对循环开始时(BOC)的冷却剂临界硼浓度数据进行了评估,并确定了必要的总碱化剂浓度(主要是氢氧化钾),以确保获得较高的水化学数据。温度冷却液的pH值:在pH_(300)= 7.0和pH_(300)-7.2之间。选择该标准的原因是最新的NPP Kozloduy水化学初级回路指南,该指南可确保最大限度地减少初级回路中的建筑材料腐蚀过程(主要是燃料元件包壳和蒸汽发生器管路),并确保燃料的真正限制。熔覆层沉积(至10 /μm的熔覆层腐蚀产物厚度)。 获得的第12、13和14个燃料循环的工厂数据表明,通过HFP状态可确保冷却液的pH_(300)值高于7.0,并且在冷却液中加入的氢氧化钾剂量应低于0.45mmol / kg。在启动,所有运行期间和停机期间,都应遵循激活的冷却液腐蚀产物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号