首页> 外文会议>International Mechanical Engineering Congress and Exposition 2007 >MODELING OF DYNAMICALLY LOADED OPEN-CELL METALLIC FOAMS
【24h】

MODELING OF DYNAMICALLY LOADED OPEN-CELL METALLIC FOAMS

机译:动态加载的开孔金属泡沫的建模

获取原文

摘要

Heterogeneous cellular materials such as metallic and polymeric open-celled foams are preferable in many engineering applications requiring mitigation of energy during sudden impact loading. This brief communication presents an approach for modeling dynamically loaded open-cell metallic foams. It is implicitly assumed that there exists a length scale separation where the microstructural dimensions are much smaller than the macroscopic dimensions. In this context, a macroscopic point translates into a microscopic array of identical unit cells sharing the same macroscopic fields. Dictated by a model for the metallic cell wall constitutive behavior, the effective unit cell response is then obtained from a structural micromechanical model which enforces the principle of minimum action on a representative 3D unit cell. The effective macroscopic response at every node in the FEM mesh (equilibrium, stresses, stress tangents) is then provided by the unit cell microscopic model. The present theory allows one to define a constitutive formulation for lightweight, open-celled foams based on clear and quantifiable parameters such as microstructural topology and ligament properties while capturing the effects of dynamic loading via viscous dissipation at ligament level and microinertia at unit cell level. History of deformation is considered at ligament level while axial and bending deformation are considered at unit cell level. As observed experimentally, the resulting macroscopic FEM simulations clearly demonstrate how the material undergoes heterogeneous deformation during cellular structure collapse.
机译:在要求在突​​然的冲击载荷期间降低能量的许多工程应用中,非均质的多孔材料,例如金属和聚合物的开孔泡沫是优选的。此简短的交流提出了一种用于对动态加载的开孔金属泡沫进行建模的方法。隐含地假设存在一个长度尺度分离,其中微观结构尺寸远小于宏观尺寸。在这种情况下,宏观点转化为共享相同宏观视野的相同单位晶胞的微观阵列。然后根据金属细胞壁本构模型,从结构微力学模型中获得有效的晶胞响应,该模型对代表性3D晶胞实施了最小作用原理。 FEM网格中每个节点的有效宏观响应(平衡,应力,应力切线)随后由晶胞微观模型提供。本理论允许人们基于透明和可量化的参数(例如微结构拓扑和韧带特性)定义轻质,开孔泡沫的本构公式,同时通过韧带水平的粘滞耗散和晶胞水平的微惯性来捕获动态载荷的影响。在韧带水平上考虑变形的历史,而在晶胞水平上考虑轴向和弯曲变形。正如实验观察到的那样,由此产生的宏观有限元模拟清楚地表明了该材料在蜂窝结构塌陷过程中如何经历异质变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号