首页> 外文会议>International Mechanical Engineering Congress and Exposition 2007 >TIME EVOLUTION OF ENTROPY IN A SYSTEM COMPRISED OF A BOLTZMANN TYPE GAS: AN APPLICATION OF THE BERETTA EQUATION OF MOTION
【24h】

TIME EVOLUTION OF ENTROPY IN A SYSTEM COMPRISED OF A BOLTZMANN TYPE GAS: AN APPLICATION OF THE BERETTA EQUATION OF MOTION

机译:玻尔兹曼型气体系统中熵的时间演化:贝雷塔运动方程的应用

获取原文

摘要

Basing his work on a new formulation of thermodynamics called the Unified Quantum Theory of Mechanics and Thermodynamics first published in a series of four ground breaking papers in 1976 (Hatsopoulos and Gyftopoulos, 1976a,b,c,d), Beretta develops a dynamical postulate (Beretta et al. 1984; Beretta, Gyftopoulos, and Park, 1985) consistent both with the non-dynamical quantum mechanical postulates of the Unified Theory as well as with its thermodynamic ones (the 2nd Law in particular). The theory itself simply and elegantly extends in a unified fashion the concepts of thermodynamics to quantum mechanics and the concepts of quantum mechanics to thermodynamics. It does so without the bridge traditionally used, i.e. statistical mechanics, eliminating a number of the ambiguities, tautologies, and inconsistencies (including a built-in violation of the 2nd Law) inherent in the presentations of both Classical and Statistical Thermodynamics. This new formulation generalizes thermodynamics so that it applies to all systems large or small (including one particle systems) either in a state of thermodynamic (i.e. stable) equilibrium or not in a state of thermodynamic equilibrium. The Beretta equation of motion describes the time evolution of the state of a system via a density operator which is uniquely based on an unambiguous preparation of an ensemble of identical systems, i.e. the so-called homogenous or irreducible ensemble, and does so both for unitary and non-unitary reversible as well as irreversible processes. In this paper, we present a simple application of this general equation of motion to the time evolution of the entropy of a closed system comprised of a Boltzmann type gas consisting of one or of many particles undergoing an irreversible process. A number of different energy eigenlevels and initial states and their effects on entropy generation and the final state of maximum entropy, i.e. stable equilibrium, are examined. A simple time-dependent work interaction is introduced into the formulation to show how this in turn affects the evolution of the state of the system.
机译:贝雷塔(Beretta)以一种新的热力学公式为基础,该热力学公式被称为《力学与热力学的统一量子理论》(1976年首次发表在一系列四篇突破性论文(Hatsopoulos和Gyftopoulos,1976a,b,c,d)中),贝雷塔(Beretta)提出了动力学假设( Beretta et al。1984; Beretta,Gyftopoulos,and Park,1985)与统一理论的非动力学量子力学假设及其热力学假设(特别是第二定律)一致。该理论本身以统一的方式简单而优雅地将热力学的概念扩展到了量子力学,并将量子力学的概念扩展到了热力学。这样做无需传统上使用的桥梁,即统计力学,就消除了经典热力学和统计热力学演示中固有的许多歧义,重言式和不一致之处(包括对第二定律的内在违反)。这种新的公式概括了热力学,因此它适用于处于热力学(即稳定)平衡状态或不处于热力学平衡状态的所有大小的系统(包括一个粒子系统)。贝雷塔运动方程式通过密度算符描述了系统状态的时间演化,它唯一地基于对相同系统的集合(即所谓的均匀或不可约的集合)的明确准备,并且对于单一系统而言都是如此。非单一的可逆以及不可逆的过程。在本文中,我们将这个一般运动方程式简单应用到一个密闭系统的时间演化中,该密闭系统由玻尔兹曼型气体组成,该气体由一个或多个经历不可逆过程的粒子组成。研究了许多不同的能量本征水平和初始状态及其对熵生成和最大熵的最终状态(即稳定平衡)的影响。在公式中引入了一个简单的与时间相关的工作交互,以显示这又如何影响系统状态的演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号