首页> 外文会议>International Mechanical Engineering Congress and Exposition 2007 >MASSIVELY PARALLEL COMPUTATIONS OF DAMAGE TO A THIN-WALLED STRUCTURE FROM BLAST
【24h】

MASSIVELY PARALLEL COMPUTATIONS OF DAMAGE TO A THIN-WALLED STRUCTURE FROM BLAST

机译:爆炸对薄壁结构的损伤的大规模并行计算

获取原文

摘要

The objective of this work is to determine initial structural response from a blast threat for the newer class of liquefied natural gas (LNG) vessels. Import of LNG by ship is expected to significantly increase in the coming decade and there is concern over vulnerability. Current vessels hold up to 160,000 m~3 of LNG, while the new vessels will hold up to 266,000 m3. These vessels are double-hulled and have an insulating containment system which keeps the LNG at a temperature of 111 K. Calculations were performed to determine the structural response of these ships from blast using CTH, a shock-physics code, developed at Sandia National Laboratories. The calculations were performed on massively parallel computing platforms (~1000 processors) due to the number of elements required (~10~9). Detailed geometry of the stiffeners, framing, and changing hull thickness with elevation were included, as well as the insulation, LNG, and water. Thus, there is multiphase interaction with the structure. The geometry of these ships fall within a class of problems termed 'thin-walled problems' since they require resolution of length scales from ~10 mm to ~10 m. In order to capture the smallest length scales an adaptive mesh refinement (AMR) feature was used. This feature allows for cells to be concentrated in active regions as the calculation progresses. This paper will discuss the resolution challenges of simulating thin-walled problems, as well as regimes in which shock-physics codes, such as CTH, are appropriate for application. Results will be provided without disclosure of threats.
机译:这项工作的目的是确定爆炸威胁对新型液化天然气(LNG)船的初始结构响应。预计在未来十年中,船用液化天然气的进口量将大大增加,并且人们对脆弱性表示担忧。现有船舶可容纳160,000 m〜3的液化天然气,而新船舶将容纳266,000 m3。这些船是双层船体,并具有一个绝缘的围护系统,可将液化天然气保持在111 K的温度下。使用桑迪亚国家实验室制定的CTH(一种冲击物理规范)进行了计算,以确定这些船在爆炸时的结构响应。 。由于所需的元素数量(〜10〜9),因此在大规模并行计算平台(〜1000个处理器)上执行了计算。包括了加劲肋的详细几何形状,框架以及随高度变化的船体厚度,以及隔热层,LNG和水。因此,与结构存在多相相互作用。这些船的几何形状属于一类称为“薄壁问题”的问题,因为它们需要分辨从〜10 mm到〜10 m的长度尺度。为了捕获最小的长度尺度,使用了自适应网格细化(AMR)功能。此功能允许在计算过程中将单元格集中在活动区域​​中。本文将讨论模拟薄壁问题的解决方案挑战,以及适用于冲击物理代码(例如CTH)的机制。结果将在不披露威胁的情况下提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号