首页> 外文会议>ASME(American Society of Mechanical Engineers) Pressure Vessels and Piping Conference 2007 >Determination of the Elastic-Plastic Fracture Mechanics Z-factor for Alloy 182 Weld Metal Flaws for Use in the ASME Section XI Appendix C Flaw Evaluation Procedures
【24h】

Determination of the Elastic-Plastic Fracture Mechanics Z-factor for Alloy 182 Weld Metal Flaws for Use in the ASME Section XI Appendix C Flaw Evaluation Procedures

机译:确定用于ASME第十一部分附录C缺陷评估程序的182合金焊接金属缺陷的弹塑性断裂力学Z因子

获取原文

摘要

One of the ways that the ASME Section XI code incorporates elastic-plastic fracture mechanics (EPFM) in the Section XI Appendix C flaw evaluation procedures for circumferential cracks is through a parameter called Z-factor. This parameter allows the simpler limit-load (or net-section-collapse) solutions to be used with a multiplier from EPFM analyses. Traditionally the EPFM solution was determined by using the GE-EPRI J-estimation scheme to determine the maximum load by EPFM, and Z = limit load / EPFM solution. The Z-factor is a function of the material toughness as well as the pipe diameter.With the advent of primary water stress-corrosion cracks (PWSCC) in pressurized water reactor (PWR) dissimilar metal welds (DMW), there is a need to develop Z-factors for Alloy 82/182 nickel-based alloy welds that are susceptible to such cracks. Although there have been Z-factor solutions for cracks in stainless and ferritic pipe butt welds, the DMW are somewhat different in that there is a much lower yield strength material on one side of the weld (typically forged or wrought 304 stainless steel) and on the other side of the weld the low alloy steel has a much higher strength than even the weld metal. This paper shows how 3D finite element analyses were used for a particular pipe size to determine the sensitivity of the crack location in the Alloy 182 weldment (crack in the center of weld, or closer to the stainless or low alloy steel sides), and how an appropriate stress-strain curve was determined for use in the J-estimation schemes. A Z-factor as a function of the pipe diameter was then calculated using the LBB.ENG2 J estimation scheme using the appropriate stress-strain curves from the finite element analysis. The LBB.ENG2 analysis was used rather than the GE-EPRI estimation scheme since it has been found that the LBB.ENG2 analysis is more accurate when compared with full-scale pipe tests. From past work, the GE-EPRI method was found to be the most conservative of the J-estimation schemes in predicting the maximum loads for circumferential flaws when compared to full-scale circumferentially cracked-pipe tests. The proposed Z-factor relationship should be restricted to normal operating temperatures (above 200C) with low H_2 concentrations, where the Alloy 182 weld metal exhibits high toughness.
机译:ASME第XI节代码在第XI节附录C的圆周裂纹缺陷评估程序中结合了弹塑性断裂力学(EPFM)的一种方式是通过称为Z因子的参数进行的。此参数允许将更简单的极限载荷(或净截面崩溃)解决方案与EPFM分析的乘数一起使用。传统上,使用GE-EPRI J估计方案通过EPFM确定最大负载来确定EPFM解决方案,Z =极限负载/ EPFM解决方案。 Z因子是材料韧性以及管道直径的函数。随着压水反应堆(PWR)异种金属焊缝(DMW)中主要水应力腐蚀裂纹(PWSCC)的出现,需要为易产生此类裂纹的合金82/182镍基合金焊缝开发Z因子。尽管存在针对不锈钢和铁素体管对接焊缝中裂纹的Z因子解决方案,但DMW有所不同,因为在焊缝的一侧(通常为锻造或锻造304不锈钢)和焊缝的另一端,低合金钢甚至比焊缝金属具有更高的强度。本文展示了如何针对特定的管道尺寸使用3D有限元分析来确定182合金焊件中裂纹位置(裂纹在焊缝中心,或更靠近不锈钢或低合金钢侧面)的敏感性,以及如何确定了合适的应力-应变曲线以用于J估计方案。然后,使用LBB.ENG2 J估计方案,使用来自有限元分析的适当应力-应变曲线,计算Z因子随管径的变化。使用LBB.ENG2分析而不是GE-EPRI估计方案,因为已发现与全尺寸管道测试相比,LBB.ENG2分析更准确。从过去的工作中发现,与全尺寸周向破裂管试验相比,GE-EPRI方法在预测周向缺陷的最大载荷时是J估计方案中最保守的方法。拟议的Z因子关系应限于低H_2浓度的正常工作温度(200°C以上),在该温度下182合金焊接金属具有高韧性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号