首页> 外文会议>Offshore Technology Conference(OTC 08): Waves of Change >Borehole Pressure Coring and Laboratory Pressure Core Analysis for Gas Hydrate Investigations
【24h】

Borehole Pressure Coring and Laboratory Pressure Core Analysis for Gas Hydrate Investigations

机译:钻孔水合物取芯和实验室压力岩心分析,用于天然气水合物研究

获取原文

摘要

Marine gas hydrate investigations, whether they be conducted as resource evaluations for national governments, as geohazard assessments for major oil companies, or as climate-related scientific endeavors funded through international funding agencies, have begun to develop common strategies. Gas hydrate can occur up to several hundred meters below the sediment-water interface, depending on the water depth and thermal gradients; consequently, for a full assessment of gas hydrate occurrence, nature, distribution, and concentration, samples must be obtained through drilling and coring. Samples retrieved and analyzed at full in-situ pressures using pressure coring techniques are the only way to ground truth the findings from other techniques, including physical and chemical analysis of non-pressure cores or the interpretation of seismic and borehole log data. Thermal imaging of non-pressure cores provides an immediate and valuable method for observing the endothermic behavior of dissociating gas hydrate but does little in itself to characterize the gas hydrate morphology or concentration. Porewater analysis techniques rely on the freshening of porewaters when gas hydrate dissociates, generally measured via chlorinity; these analyses provide excellent spot measurements of the concentration of gas hydrate if the background chlorinity profile is well established, but tells the investigator little about the nature of the gas hydrate. Furthermore, in lakes or nearshore environments where the porewaters may have very low or highly variable chlorinities, this technique will be far less reliable or accurate. Only methane mass balance calculations from depressurization of cores recovered at full pressure provides the benchmark or "gold standard" for gas hydrate concentration assessment. Measurements of the density and volume of pressure cores through X-ray imaging and gamma densitometry have removed errors in estimation of pore volume, making this methane mass balance technique accurate and robust. Non-destructive testing and analysis of gas-hydrate-bearing cores at in-situ pressures and temperatures also provides detailed information on the in-situ nature and morphology of gas hydrate in sediments. The detailed profiles of density and V_P, together with spot measurements of Vs, electrical resistivity, and hardness, provide background data essential for modeling the behavior of the formation on a larger scale. X-ray images show the hydrate morphology in relation to the sediment, which will control the kinetics of methane release. Gas-hydrate-bearing pressure cores subjected to X-ray tomographic reconstruction provide compelling evidence that gas hydrate morphology in many natural sedimentary environments is particularly complex and impossible to replicate in the laboratory.
机译:海水天然气水合物调查,无论是作为国家政府的资源评估,对大型石油公司的地质灾害评估,还是作为由国际资助机构资助的与气候有关的科学努力,都已经开始制定共同的战略。取决于水深和热梯度,天然气水合物可在沉积物-水界面以下几百米处产生。因此,为了全面评估天然气水合物的发生,性质,分布和浓度,必须通过钻孔和取芯来获得样品。使用压力取芯技术在全现场压力下取回和分析的样品是将其他技术(包括非压力岩心的物理和化学分析或地震和井眼测井数据的解释)的发现推论真实的唯一途径。非压力岩心的热成像为观察解离天然气水合物的吸热行为提供了一种直接而有价值的方法,但其本身几乎无法表征天然气水合物的形态或浓度。当气体水合物分解时,孔隙水分析技术依赖于孔隙水的新鲜度,通常通过氯来测量。如果能够很好地确定本底氯含量,这些分析可提供出色的现场水合物浓度测量结果,但对研究人员而言几乎没有气体水合物的性质。此外,在湖泊或近岸环境中孔隙水的氯含量可能非常低或变化很大,这种技术的可靠性或准确性将大大降低。只有通过在全压下开采的岩心减压得到的甲烷质量平衡计算才能为气体水合物浓度评估提供基准或“黄金标准”。通过X射线成像和伽马光密度法对压力芯的密度和体积进行测量,消除了孔隙体积估算中的误差,从而使这种甲烷质量平衡技术准确而可靠。在原位压力和温度下对含天然气水合物岩心的无损检测和分析还提供了有关沉积物中天然气水合物的原位性质和形态的详细信息。密度和V_P的详细资料,以及Vs,电阻率和硬度的现场测量结果,提供了对较大规模的地层行为进行建模所必需的背景数据。 X射线图像显示了与沉积物有关的水合物形态,它将控制甲烷释放的动力学。经受X射线断层扫描重建的含天然气水合物压力核提供了令人信服的证据,表明许多自然沉积环境中的天然气水合物形态特别复杂,无法在实验室中复制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号