首页> 外文会议>Offshore Technology Conference(OTC 08): Waves of Change >Numerical Simulation of Methane Hydrate Production from Geologic Formations via Carbon Dioxide Injection
【24h】

Numerical Simulation of Methane Hydrate Production from Geologic Formations via Carbon Dioxide Injection

机译:二氧化碳注入地质层中甲烷水合物生产的数值模拟

获取原文

摘要

Scientific and technological innovations are needed to realize effective production of natural gas hydrates. Whereas global estimates of natural gas hydrate reservoirs are vast, accumulations vary greatly in nature and form. Suboceanic deposits vary from disperse concentrations residing at low saturations in the pore space of unconsolidated sediments with sand-sized particles to higher concentrations residing in the fractures of sediments with clay-sized particles. Conventional methods for gas hydrate production include depressurization, thermal stimulation, and inhibitor injection. For suboceanic accumulations in sandy sediments, depressurization has been shown, through numerical simulation, to be the most feasible production technology. However, recovery efficiencies are too low to justify pursuing these energy reservoirs. Under high pressure, low temperature suboceanic conditions the hydrate structure can accommodate small molecules other than methane (CH_4), such as carbon dioxide (CO_2) and nitrogen (N_2) in both the small and large cages. Although CO_2 and N_2 clathrates generally are not naturally as abundant as those of CH_4, their occurrence forms the foundation of an unconventional approach for producing natural gas hydrates that involves the exchange of CO_2 with CH_4 in the hydrate structure. This unconventional concept has several distinct benefits over the conventional methods: 1) the heat of formation of CO_2 hydrate is greater than the heat of dissociation of CH_4 hydrate, providing a low-grade heat source to support additional methane hydrate dissociation, 2) exchanging CO_2 with CH_4 will maintain the mechanical stability of the geologic formation, and 3) the process is environmentally friendly, providing a sequestration mechanism for the injected CO_2. An operational mode of the STOMP simulator has been developed at the Pacific Northwest National Laboratory that solves the coupled flow and transport equations for the mixed CH_4-CO_2 hydrate system under nonisothermal conditions, with the option for considering NaCl as an inhibitor in the pore water. This paper describes the numerical simulator, its formulation, assumptions, and solution approach and demonstrates, via numerical simulation, the production of gas hydrates from permafrost accumulations in sandstone formations with high gas hydrate saturations and suboceanic accumulations in sandy sediments with low hydrate saturations using the CO_2-CH_4 exchange technology.
机译:需要科学和技术创新来实现天然气水合物的有效生产。尽管全球对天然气水合物储层的估算是巨大的,但在性质和形式上却存在很大的差异。次洋沉积物的变化范围从分散的浓度低,处于未固结的含沙粒大小的沉积物的孔隙空间中的孔隙空间到分散的沉积物,具有粘土大小的沉积物的裂缝中的较高浓度。用于生产天然气水合物的常规方法包括减压,热刺激和抑制剂注入。对于砂质沉积物中的近海沉积,通过数值模拟已显示出减压是最可行的生产技术。但是,回收效率太低,不足以证明追求这些储能器是合理的。在高压,低温近洋条件下,水合物结构可以在小型和大型笼子中容纳除甲烷(CH_4)以外的小分子,例如二氧化碳(CO_2)和氮(N_2)。尽管CO_2和N_2包合物通常不如CH_4丰富,但它们的出现构成了生产天然气水合物的非常规方法的基础,该方法涉及水合物结构中CO_2与CH_4的交换。与常规方法相比,这种非常规概念具有几个明显的好处:1)CO_2水合物形成的热量大于CH_4水合物的分解热,提供了低级热源来支持其他甲烷水合物的分解,2)交换CO_2 CH_4将保持地质构造的机械稳定性,并且3)该过程对环境友好,为注入的CO_2提供了隔离机制。太平洋西北国家实验室已经开发出STOMP模拟器的操作模式,该模式可以解决非等温条件下混合CH_4-CO_2水合物系统的耦合流和输运方程,并且可以考虑将NaCl用作孔隙水中的抑制剂。本文介绍了数值模拟器,其公式,假设和解决方法,并通过数值模拟证明了天然气水合物的产生是由多年冻土层中天然气水合物饱和度高的多年冻土积累和低水分饱和度的砂质沉积物中的次洋沉积产生的。 CO_2-CH_4交换技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号