首页> 外文会议>5th Joint ASME(American Society of Mechanical Engineers)/JSME(Japanese Society of Mechanical Engineers) Fluids Engineering Division Summer Conference 2007(FEDSM2007) >ANALYSIS OF THE PARALLEL BLADE VORTEX INTERACTION WITH LEADING EDGE BLOWING FLOW CONTROL USING THE PROPER ORTHOGONAL DECOMPOSITION
【24h】

ANALYSIS OF THE PARALLEL BLADE VORTEX INTERACTION WITH LEADING EDGE BLOWING FLOW CONTROL USING THE PROPER ORTHOGONAL DECOMPOSITION

机译:正交折角法分析带前沿流动的平行叶片涡相互作用

获取原文

摘要

Interactions of vortical unsteady flows with structures are often encountered in several engineering applications. Such flow structure interactions (FSI) can be responsible for generating significant loads and can have many detrimental structural and acoustic side effects, such as structural fatigue, radiated noise and even catastrophic results. Amongst the different types of FSI, the parallel Blade-Vortex Interaction (BVI) is one of the most prominent. The authors in a previous work (Weiland and Vlachos, 2006) reported an active flow control technique that successfully minimizes the parallel BVI. This technique is based on disrupting the incident vortex using a jet issued via Leading Edge Blowing (LEB), hence, hereon we term the method LEB. The effectiveness of the method was experimentally analyzed using Time-Resolved Digital Particle Image Velocimetry (TRDPIV) recorded at a rate sufficient to fully resolve the spatio-temporal dynamics of the flow field combined with simultaneous accelerometer measurements of the structure. These measurements quantitatively document the FSI dynamics. While our results demonstrated that for the range of our experimental parameters the LEB is successful in dramatically modifying the BVI, the question still remains as to which physical processes are responsible for this reduction. This paper represents a continuation of our effort to further understand the dynamics of using active flow control to mitigate BVI. We present Proper Orthogonal Decomposition (POD) analysis of the temporally resolved planar flow fields for two extreme cases that were reported in the previous work. The two cases correspond to a large wake generator and a small wake generator. The POD technique was chosen specifically for its ability to reduce a complicated flow field into its optimal fundamental modes with a description of the energy contained in each mode, thereby simplifying the dynamics of a flow-field system for analysis. Results of the POD analysis for the small wake generator indicate that for no LEB, the fundamental (i.e. most energetic) mode is given by the vortex shedding of the circular cylinder upstream. The addition of LEB reduces the energy contained in this fundamental mode. Thus the LEB jet has the effect of reducing the flow field coherency; the structure of the exciting vortices is broken up into smaller vortices which have less or little effect on the transfer of energy from the wake to the airfoil. For the case of the large wake generator, the LEB jet has the opposite effect: the jet organizes the circular cylinder wake into flow structures that maintain their form, and thus the wake retains its ability to excite the airfoil into vibrations.
机译:在一些工程应用中经常遇到涡旋非定常流动与结构的相互作用。这种流动结构相互作用(FSI)可能会产生很大的载荷,并可能产生许多有害的结构和声学副作用,例如结构疲劳,辐射噪声甚至灾难性结果。在不同类型的FSI中,并行刀片-涡流交互(BVI)是最突出的之一。作者在先前的工作中(Weiland和Vlachos,2006年)报告了一种主动流量控制技术,该技术成功地使并行BVI最小化。该技术基于使用前缘吹气(LEB)发出的射流破坏入射涡流的方法,因此,在此我们将其称为方法LEB。使用时间分辨数字粒子图像测速仪(TRDPIV),以足以完全解决流场的时空动态变化的速度记录,并同时进行结构的加速计测量,对该方法的有效性进行了实验分析。这些测量结果定量地记录了FSI动态。尽管我们的结果表明,对于我们的实验参数范围,LEB可以成功地极大地修改BVI,但仍然存在问题,哪些物理过程是造成这种还原的原因。本文代表了我们继续努力以进一步了解使用主动流控制来缓解BVI的动态的延续。我们提出了在以前的工作中报告的两种极端情况的时间分辨平面流场的正确正交分解(POD)分析。这两种情况分别对应于大型尾流发生器和小型尾流发生器。之所以选择POD技术,是因为它具有将复杂的流场简化为最佳基本模式的能力,并描述了每种模式中包含的能量,从而简化了用于分析的流场系统的动力学。小型尾流发生器的POD分析结果表明,对于没有LEB的情况,基本(即最有能量)模式是由上游圆柱体的涡旋脱落给出的。 LEB的添加减少了该基本模式中包含的能量。因此,LEB射流具有降低流场相干性的作用。激发涡旋的结构被分解成较小的涡旋,这些涡旋对从尾流到翼型的能量传递影响很小或很小。对于大型尾流发生器,LEB射流具有相反的效果:射流将圆柱状尾流组织成保持其形状的流动结构,因此尾流保留了其激发翼型振动的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号