首页> 外文会议>International Conference on Mechanical Engineering and Mechanics >A Numerical Technique for Three-dimensional Fatigue Crack Growth Simulation
【24h】

A Numerical Technique for Three-dimensional Fatigue Crack Growth Simulation

机译:三维疲劳裂纹增长模拟的数值技术

获取原文

摘要

A numerical procedure based on ANSYS applicable to the simulation of the fatigue crack growth of 3D mixed-mode is described. This procedure expresses the geometry discontinuity caused by a crack with two groups of joined Coons surfaces, which separately represent the top surface and undersurface of the crack, and then gives a subdivision for the cracked structure to ensure the quality of the mesh near the crack tip. According to this subdivision, finite element analysis (FEA) is performed to calculate the three types of stress intensity factors (SIF),KⅠ, KⅡ and KⅢ. Based on the theory of linear-elastic mixed-mode crack growth and the Paris equation, the extended direction and distance at each point along the crack front curve are obtained, and then a new crack front and expanded partial crack surface can be formed. The characteristic of parameters chosen enables the procedure to be implemented automatically and efficiently, and fatigue crack growth can then be easily simulated in a step-by-step way. Following the described technical details, some simulations of typical 3D crack fatigue growths are performed. This method's geometric adaptability and high efficiency is also demonstrated. In addition, subjected to simple load or under simple stress field, the angle of deflection of crack growth is usually obviously larger than other steps, while this conclusion may be incorrect for the case of a complex structure subjected to complex load.
机译:描述了一种基于适用于模拟3D混合模式的疲劳裂纹生长模拟的ANSYS的数值过程。该方法表达了由两组连接的铜表面的裂缝引起的几何不连续性,其单独代表裂缝的顶部表面和下表面,然后给出裂纹结构的细分,以确保裂缝尖端附近的网格的质量。根据该细分,进行有限元分析(FEA)以计算三种类型的应力强度因子(SIF),KⅠ,KⅡ和KⅢ。基于线性弹性混合模式裂缝的理论和巴黎方程,获得沿裂缝前曲线的每个点处的延伸方向和距离,然后可以形成新的裂缝前沿和膨胀的部分裂缝表面。所选择的参数的特性使得能够自动且有效地实现的过程,然后可以以逐步的方式容易地模拟疲劳裂纹生长。在所述技术细节之后,进行了一些典型的3D裂纹疲劳生长模拟。该方法还证明了这种方法的几何适应性和高效率。此外,经过简单的负载或在简单的应力场下,裂纹生长的偏转角通常明显大于其他步骤,而该结论对于经受复合载荷的复杂结构的情况可能是不正确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号