首页> 外文会议>Canadian Society for Civil Engineering annual conference >IMPROVED REMOVAL OF TARGET PHARMACEUTICALS FROM WASTEWATER USING MODIFIED BIOCHAR
【24h】

IMPROVED REMOVAL OF TARGET PHARMACEUTICALS FROM WASTEWATER USING MODIFIED BIOCHAR

机译:使用改性的生物炭改善从废水中除去靶药物

获取原文

摘要

Latest wood waste survey conducted in 2012 concluded that around 9.6 million tonnes (including non-residential sources such as woods) are being disposed of yearly in Ontario, with a diversion rate of only 22.2% (Statistics Canada, 2012). Biochar, produced from the pyrolysis of agricultural waste and forest industry by-products as feedstock, can be used in several applications, including: (1) soil amendment (Hunt et al., 2010), (2) carbon sequestration (IBI, 2016), (3) pollution prevention through better management of agricultural waste and run-off control, and (4) reuse potential as bio-oil. Biochar has been traditionally used for the removal of heavy metals from wastewater (Mohan et al., 2007), but it also received increased interest in recent years for its capacity to adsorb emerging contaminants such as pharmaceuticals (Kyzas et al., 2015; vom Eyser et al., 2015; Jung et al., 2015). Biochar physico-chemical properties are highly influenced by the pyrolysis process (e.g. slow or fast). Biochar produced at high temperatures yields higher surface area and micro-porosity that can improve its adsorption potential (Ahmad et al., 2012). Substrate composition also dictates the physical and chemical properties of biochar, and current biochar production is focused on advanced pyrolysis processes that allow higher yield and adsorptive characteristics (Lima et al., 2010; Ok et al., 2015). Slow and fast pyrolysis processes of biochar generate varying impact on its surface area. Generally, fast pyrolysis at higher temperatures results in higher yield, whereas slow pyrolysis at high temperature was found to significantly improve surface area. For example, Yao et al. (2012) found that Brazilian pepper woods, bamboo, sugarcane bagasse, and hickory wood slowly pyrolyzed at 600°C produced biochar with surface areas of 234.7, 375.5, 388.3 and 401.0 m~2/g, respectively, while biochars produced at 450°C had only areas in the range of 0.7 to 13.6 m~2/g. Feedstock composition and production technology also play an important role in the improvement of surface area. In the present study, we investigate a cost effective biochar treatment mechanism that yields high removal efficiency of selected pharmaceuticals including Carbamazepine and other pharmaceuticals of similar physicochemical properties such as Ibuprofen, Clofibric acid, and Ciprofloxacin, using High Performance Liquid Chromatography and Brunauer-Emmett-Teller for detection and analysis. Other natural soil amendments, such as synthesized zeolite, are also considered, and will be compared to treated biochar.
机译:2012年进行的最新木材废物调查得出结论,大约960万吨(包括树林等非住宅资源)正在安大略省均处置,但增量仅为22.2%(加拿大统计数据,2012年)。从农业废物和森林行业副产品作为原料的热解产生的生物炭,可用于若干应用,包括:(1)土壤修正(Hunt等,2010),(2)碳封存(IBI,2016 ),(3)通过更好地管理农业废物和耗尽控制,(4)作为生物油的潜力,通过更好的管理预防。 BioChar传统上用于从废水中去除重金属(Mohan等,2007),但它也得到了近年来的兴趣,以获得其吸附药品等新兴污染物(Kyzas等,2015; vom; vom; Eyser等人。,2015; Jung等,2015)。 Biochar物理化学性质受到热解过程的高度影响(例如,慢或快)。在高温下产生的生物炭产生更高的表面积和微孔隙,可以改善其吸附电位(Ahmad等,2012)。底物组合物还决定了生物炭的物理和化学性质,并且目前的生物炭生产重点是允许更高产量和吸附特性的晚期热解过程(Lima等,2010; Ok等,2015)。 Biochar的缓慢和快速的热解过程产生不同影响其表面积。通常,在较高温度下的快速热解导致较高的产率,而在高温下慢热解是显着改善表面积。例如,Yao等人。 (2012)发现,巴西辣椒林,竹子,甘蔗队,和山核桃木材在600°C的生物炭慢慢解散,分别产生234.7,375.5,388.3和401.0m〜2 / g的生物炭,而在450°产生的生物谱C只有0.7至13.6 m〜2 / g的区域。原料组成和生产技术在表面积的改进中也发挥着重要作用。在本研究中,我们研究了一种成本效益的生物炭治疗机制,其产生了高效液相色谱法和Brunauer-Emmett(如布洛芬,Cloficric)和环丙沙星等所选药物的高消除效率。出纳员检测和分析。还考虑了其​​他天然土壤修正案,例如合成的沸石,并将与处理的生物炭进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号