首页> 外文会议>International Waveform Diversity and Design Conference >Waveform diversity and adaptive signal processing to improve SBR GMTI performance degraded by MEO antenna mechanical distortions
【24h】

Waveform diversity and adaptive signal processing to improve SBR GMTI performance degraded by MEO antenna mechanical distortions

机译:波形分集和自适应信号处理,以改善因MEO天线机械失真而降低的SBR GMTI性能

获取原文

摘要

For a moving platform lookdown radar with the antenna aligned to the platform's velocity vector, the clutter Doppler is a function of the azimuth angle. For space-based radar (SBR), the earth's rotation induces another component to the clutter motion, causing the clutter Doppler to be a function of the slant range and increasing the clutter spectral width. This significantly degrades the ability of space-time adaptive processing (STAP) algorithms to reject the interference. Because of the SBR wider elevation field of view and higher platform speed, the impact of this effect is much greater than for airborne radars. At medium-earth orbit (MEO), SBRs have very long slant range requirements, which result in very large antenna apertures to meet target detection. The large physical sizes of these antenna systems and the unequal thermal heating in the space environment results in mechanical distortion of the active electronically-scanned array (AESA) or reflector structures. This paper presents the MEO Ground Moving Target Indication (GMTI) performance for both a large AESA and a cylindrical reflector fed by a linear array. To compensate for the degrading effects of both clutter range ambiguities enhanced by the earth's rotation and mechanical distortions (on the reflector feed horizontal aperture), an integrated approach was investigated which consisted of: 1) Quadratic phase modulation waveforms; 2) Transmit RF phase shift compensation; and 3) Receive STAP true target steering vector correction. The GMTI signal-to-interference-plus-noise ratio (SINR) performance of a generic MEO SBR was greatly improved using combinations of these techniques.
机译:对于与平台的速度向量对齐的天线的移动平台视线雷达,杂波多普勒是方位角的函数。对于基于空间的雷达(SBR),地球的旋转将另一个组件引导到杂波运动,使杂波多普勒是倾斜范围的函数并增加杂波谱宽度。这显着降低了时空自适应处理(STAP)算法拒绝干扰的能力。由于SBR更广泛的视野和更高的平台速度,这种效果的影响远大于空气雷达。在中地轨道(MEO),SBR具有非常长的倾斜范围要求,导致非常大的天线孔以满足目标检测。这些天线系统的大物理尺寸和空间环境中的不等热加热导致有源电子扫描阵列(AESA)或反射器结构的机械变形。本文介绍了由线性阵列供给的大AESA和圆柱形反射器的MEO接地移动目标指示(GMTI)性能。为了弥补杂波范围模糊的降低效果,通过地球的旋转和机械扭曲增强(在反射器进料水平孔径上),研究了由以下组成的集成方法:1)二次相位调制波形; 2)传输RF相移补偿; 3)接收Stap True目标转向矢量校正。使用这些技术的组合大大提高了GMTI信号到干扰 - 加噪声比(SINR)性能,大大提高了这些技术的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号