首页> 外文会议>Laser materials processing conference >DEVELOPMENT OF 2D AND 3D LASER FORMING STRATEGIES FOR THIN SECTION MATERIALS USING SCANNING OPTICS
【24h】

DEVELOPMENT OF 2D AND 3D LASER FORMING STRATEGIES FOR THIN SECTION MATERIALS USING SCANNING OPTICS

机译:利用扫描光学技术开发薄截面材料的2D和3D激光成形策略

获取原文

摘要

Laser forming offers the industrial promise ofcontrolled shaping of metallic and non-metalliccomponents for prototyping, the correction of designshape or distortion and precision adjustmentapplications. The potential process advantages includeprecise incremental adjustment, flexibility ofapplication and no mechanical 'spring-back' effect.However, the asymmetric nature of laser forming ofsheet material using conventional beam deliverymethods along multiple, continuous irradiation linesmeans that the energy input cannot readily beuniformly distributed across the work-piece, bothspatially and temporally, and each successive portionof the irradiation sequence is effectively being appliedto a part or surface of different shape to that earlier inthe sequence. Hence, a high degree of uniformity ofshape (curvature variation) in the resulting laserformed part can be difficult to achieve in practice. Theuse of scanning optics is therefore now beinginvestigated as a possible route to achieve a moreuniform temporal and spatial distribution of the laserenergy, by applying the laser energy in pulses andscanning the beam rapidly across the sheet surface. Inaddition, as the material thickness decreases itbecomes more difficult to induce high thermalgradients with conventional beam delivery methodsdue to speed limitations. Scanning optics allow highertraverse speeds and hence high thermal gradients inthin sheets and foils to ensure positive bending via theTemperature Gradient Mechanism (TGM).The work reported here centres on studies performedon a Nd:YAG laser marking system to investigate theapplication of pulsed laser energy delivered viascanning optics. Strategies developed for the 2D and3D laser forming of thin section materials arepresented. Online displacement measurements, postformingsurface contouring and metallurgicalinvestigations are included.
机译:激光成型提供了工业上的希望 金属和非金属的受控成形 用于原型设计,设计更正的组件 形状或变形以及精度调整 应用程序。潜在的工艺优势包括 精确的增量调整,灵活性强 应用,没有机械的“回弹”效应。 但是,激光成形的不对称性 使用常规光束传输的板材 多个连续照射线的方法 意味着能量输入不能轻易地 均匀地分布在整个工件上 在空间和时间上,以及每个连续的部分 有效地应用了照射顺序 到与早期形状不同的零件或表面 序列。因此,高度的一致性 产生的激光的形状(曲率变化) 在实践中很难实现成型的零件。这 因此现在正在使用扫描光学器件 被调查为实现更多目标的可能途径 激光的时间和空间均匀分布 通过以脉冲形式施加激光能量和 快速扫描光束穿过板材表面。在 另外,随着材料厚度的减小 变得更难引起高热 常规光束传输方法的梯度 由于速度限制。扫描光学器件允许更高 横移速度以及因此产生的高热梯度 薄薄的薄片和铝箔,以确保通过 温度梯度机制(TGM)。 这里报告的工作集中在进行的研究上 在Nd:YAG激光打标系统上研究 通过施加的脉冲激光能量的应用 扫描光学。为2D和2D制定的策略 薄截面材料的3D激光成型 提出了。在线位移测量,后成形 表面轮廓和冶金 调查包括在内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号