首页> 外文会议>Offshore technology conference >Optimizing Floating Offshore Multi-Wind-Turbine Design: A Parametric Study on Tower Inclination and Column Spacing
【24h】

Optimizing Floating Offshore Multi-Wind-Turbine Design: A Parametric Study on Tower Inclination and Column Spacing

机译:优化浮动海上多风轮机设计:塔式倾角和柱间距的参数研究

获取原文

摘要

Multi-turbine floating offshore platforms (MUFOPs) are emerging as a viable concept for reducing levelized cost of energy in offshore wind developments. If properly designed, the cost per megawatt of electric power generated can be lower compared to single-turbine platforms. To maximize yield, minimize cost and ensure a safe design, the spacing between rotor-nacelle assemblies (RNAs), must be carefully considered. This spacing (R), is the sum of the platform column spacing (c), and tower horizontal projected length (h). Rotor diameters pose considerable challenges to the arrangement of multiple wind turbines on one platform; challenges pertaining to safe operations, feasibility of construction and transportation. Specific insights are necessary to facilitate the development of viable concepts. The parametric study presented in this paper discusses the optimization of MUFOPs using tower inclination and column spacing. Representative configurations (adjusting tower inclination and / or column spacing) are developed with a multi-turbine semi-submersible-type platform and analyzed in time domain using coupled analysis. The configurations consist of two 5 WM reference turbines of the National Renewable Energy Laboratory (NREL), U.S.A. A non-dimensional parameter (R/c), is used to characterize the configurations. Wind, wave, and current loads are applied in analysis to assess the behavior of the system holistically. Hydrodynamic, aerodynamic, elasto-dynamic, servo-dynamic and mooring-dynamic effects are captured interactively at each time-step of analysis. An operational turbine condition is simulated in analysis using full-field turbulent wind to capture spatial variations of wind loads acting on each turbine of the system. Characteristic responses of the nacelle, tower and platform are assessed to determine the optimal combination which avoids both inadequate and excessively conservative designs of multi-wind-turbine platforms. By analyzing the spectral densities of the responses, the potential impact of the observed responses on fatigue design is qualified. Optimal configurations from the scenarios considered, allow minimal or no wake interactions, tolerable towerbase loads and acceptable accelerations and motions of the nacelle and platform. Results indicate that optimal solutions exist at R/c ratios greater than 1.0. An assessment of a range of tower inclinations and column spacing for optimal design of multi-wind-turbine platforms is a study that has not been documented in literature, and deserves attention considering current industry trends for floating offshore wind turbines. This paper offers significant insights on the characteristics of optimal tower and column arrangements for such platforms and provides reliable benchmarks for future designs.
机译:多涡轮海上浮动平台(MUFOPs)正在成为一个可行的概念降低海上风电的发展能量的平准化成本。如果设计得当,每产生的电力的兆瓦的成本可以降低相比单涡轮机平台。为了最大限度地提高产量,降低成本,并确保安全的设计,转子 - 机舱组件(的RNA)之间的间隔,必须仔细考虑。该间隔(R),是平台列间距(C)的总和,和塔的水平投影长度(H)。转子直径会对在一个平台上多个风力涡轮机的布置相当大的挑战;挑战涉及运营安全,建筑和交通的可行性。具体的见解是必要的,以方便可行的概念的发展。在本文提出的参数研究讨论使用塔倾斜度和列间距MUFOPs的优化。代表性的配置(调节塔的倾斜和/或列间隔)与多涡轮半潜式平台和开发使用耦合分析在时域中进行分析。配置包括国家可再生能源实验室(NREL),U.S.A无量纲参数(R / C)的两个5 WM参照涡轮机,用来表征的结构。风,波浪和电流负载在分析施加到整体上评估该系统的行为。液力,气动,弹动,伺服动态和系泊的动态效果在分析的每个时间步骤交互地捕获。的操作涡轮机状态,使用全视野湍流风捕获作用在系统的每一个涡轮机的风载荷的空间变化模拟了分析。机舱,塔架和平台的特性响应被评估,以确定其避免的多风力涡轮机平台的两种设计不足和过度保守的最佳组合。通过分析响应的谱密度,观察到的响应对疲劳设计的潜在影响是合格的。从考虑的情景最佳配置,允许很少或没有唤醒作用,容忍towerbase负荷和可接受的加速度和机舱和平台的运动。结果表明在r存在/ C比大于1.0的是最优解。一系列塔倾向和列间距的多风力涡轮机平台优化设计的评价是,尚未在文献中被记录在案了研究,并值得关注考虑浮动式海上风力涡轮机的当前行业的发展趋势。本文提供对这类平台的最佳塔和列安排的特点显著的见解,并提供可靠的基准未来的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号