首页> 外文会议>Image Processing Pt.1 >Detection of Abnormal Diffuse Perfusion in SPECT Using a Normal Brain Atlas
【24h】

Detection of Abnormal Diffuse Perfusion in SPECT Using a Normal Brain Atlas

机译:使用正常脑图谱检测SPECT中的异常弥漫性灌注

获取原文

摘要

Despite the advent of sophisticated image analysis algorithms, most SPECT (Single Photon Emission Computerized Tomography) cerebral perfusion studies are assessed visually, leading to unavoidable and significant inter and intra-observer variability. Here, we present an automatic method for evaluating SPECT studies based on a computerized atlas of normal regional cerebral blood flow (rCBF). To generate the atlas, normal (screened volunteers) brain SPECT studies are registered with an affine transformation to one of them arbitrarily selected as reference to remove any size and orientation variations that are assumed irrelevant for our analysis. Then a smooth non-linear registration is performed to reveal the local activity pattern displacement among the normal subjects. By computing and applying the mean displacement to the reference SPECT image, one obtain the atlas that is the normal mean distribution of the rCBF (up to an affine transformation difference). To complete the atlas we add the intensity variance with the displacement mean and variance of the activity pattern. To investigate a patient's condition, we proceed similarly to the atlas construction phase. We first register the patient's SPECT volume to the atlas with an affine transformation. Then the algorithm computes the non-linear 3D displacement of each voxel needed for an almost perfect shape (but not intensity) fit with the atlas. For each brain voxel, if the intensity difference between the atlas and the registered patient is higher than normal differences then this voxel is counted as "abnormal" and similarly if the 3D motion necessary to move the voxel to its registered position is not within the normal displacements. Our hypothesis is that this number of abnormal voxels discriminates between normal and abnormal studies. A Markovian segmentation algorithm that we have presented elsewhere is also used to identify the white and gray matters for regional analysis. We validated this approach using 23 SPECT perfusion studies (~(99m)Tc ECD) selected visually for clear diffuse anomalies (a much more stringent test than "easy" focal lesions detection) and 21 normal studies. A leave-one-out strategy was used to test our approach to avoid any bias. Based on the number of "abnormal" voxels, two simple supervised classifiers were tested: (1) minimum distance-to-mean and (2) Bayesian. A voxel was considered "abnormal" if its P value with respect to the atlas was lower that 0.01 (1%). The results show that for the whole brain, a combination of the number of intensity and displacement "abnormal" voxel is a powerful discriminant with a 91% classification rate. If we focus onlyon the voxels in the segmented gray matter the rates are slighty higher.
机译:尽管出现了复杂的图像分析算法,但大多数SPECT(单光子发射计算机断层扫描)脑灌注研究都是通过视觉评估的,从而导致不可避免的,观察者之间和观察者内部的巨大差异。在这里,我们介绍了一种基于计算机的正常区域性脑血流图谱(rCBF)评估SPECT研究的自动方法。为了生成图集,对正常(经过筛选的志愿者)脑部SPECT研究进行了仿射变换,并对其进行了仿射变换,以任意选择其中一种作为参考,以消除被认为与我们的分析无关的任何尺寸和方向变化。然后执行平滑的非线性配准,以揭示正常受试者之间的局部活动模式位移。通过计算平均位移并将其应用于参考SPECT图像,可以得到图集,该图集是rCBF的正态平均分布(直至仿射变换差)。为了完成图集,我们将强度方差与位移平均值和活动模式的方差相加。为了调查患者的病情,我们与图集构建阶段类似地进行。我们首先通过仿射变换将患者的SPECT体积注册到图集。然后,该算法计算出与图集几乎完美的形状(但强度不同)所需的每个体素的非线性3D位移。对于每个脑部体素,如果地图集和注册患者之间的强度差异高于正常差异,则将该体素计为“异常”,并且类似地,如果将体素移动到其注册位置所需的3D运动不在正常范围内位移。我们的假设是,异常体素的数量可以区分正常研究和异常研究。我们在其他地方介绍过的马尔可夫分割算法也用于识别白色和灰色物质,以进行区域分析。我们使用23种SPECT灌注研究(〜(99m)Tc ECD)进行了视觉验证,以明确的弥漫性异常(比“轻松”的病灶检测更为严格的测试)和21项正常研究验证了这种方法。采用留一法的策略来测试我们的方法,以避免任何偏见。基于“异常”体素的数量,测试了两个简单的监督分类器:(1)最小平均距离和(2)贝叶斯。如果体素相对于图谱的P值低于0.01(1%),则认为该体素“异常”。结果表明,对于整个大脑,强度和位移“异常”体素的组合是有力的判别器,分类率为91%。如果我们只关注分割后的灰质中的体素,则比率会稍高一些。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号