【24h】

Architecture and synthesis for multi-cycle on-chip communication

机译:多周期片上通信的体系结构和综合

获取原文

摘要

There are two important infection points in the development of deep submicron (DSM) process technologies. The first point is when the average interconnect delay exceeds the gate delay, which happened during mid 1990s and led to the so-called timing closure problem. The second point is when single-cycle full chip synchronization is no longer possible, which is about to happen soon. It can be shown that, even with the aggressive interconnect optimization techniques (e.g., buffer insertion and wire-sizing), 5 clock cycles are still needed to go from corner-to-corner for the die of 28.3 mm /spl times/ 28.3 mm in the 0.07 /spl mu/m technology generation, assuming a 5.63 GHz clock by 2006 predicted in ITRS'01 (2001). This clearly suggests that multi-cycle on-chip communication is a necessity in multi-gigahertz synchronous designs. However, it is not supported in the current design tools and methodologies, as most of these implicitly assume that full chip synchronization in a single clock cycle is feasible. Our contributions are as follows: (i) we propose a regular distributed register (RDR) microarchitecture which offers high regularity and direct support of multi-cycle communication; (ii) we develop a set of novel architectural synthesis algorithms to efficiently synthesize behavior-level designs onto the RDR architecture.
机译:深度亚微米(DSM)工艺技术的发展有两个重要的感染点。第一点是当平均互连延迟超过20世纪90年代中期发生的栅极延迟并导致所谓的时序闭合问题。第二点是当单周期全芯片同步不再可能,即即将发生即将发生。可以表明,即使具有积极的互连优化技术(例如,缓冲插入和电线尺寸),仍然需要5个时钟循环,以从28.3mm / spl时/ 28.3mm的模具从角上到角落。在0.07 / SPL MU / M技术生成中,假设在ITRS'01(2001)中预测了5.63 GHz时钟。这清楚地表明,多周期的片上通信是多Gigahertz同步设计的必要性。然而,当前的设计工具和方法不支持,因为大多数内隐都假设单个时钟周期中的全芯片同步是可行的。我们的贡献如下:(i)我们提出了一个定期分布式寄存器(RDR)微体系结构,提供高规律性和直接支持多周期通信; (ii)我们开发了一组新颖的架构综合算法,以有效地将行为级设计合成到RDR架构上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号