首页> 外文会议>Annual meeting of the Adhesion Society;Meeting of the Adhesion Society;World congress on adhesion and related phenomena;WCARP-II >USING SELF-ASSEMBLED MONOLAYERS TO EXPLORE THE RELATIONSHIPS BETWEEN INTERFACIAL INTERACTIONS AND FRACTURE IN STRUCTURAL ADHESIVE JOINTS
【24h】

USING SELF-ASSEMBLED MONOLAYERS TO EXPLORE THE RELATIONSHIPS BETWEEN INTERFACIAL INTERACTIONS AND FRACTURE IN STRUCTURAL ADHESIVE JOINTS

机译:使用自组装单层膜来研究结构胶接点中的界面相互作用和断裂之间的关系

获取原文

摘要

A problem of longstanding interest in adhesion science is to understand the relationship between the nature and spatial distribution of fundamental interfacial interactions and engineering fracture quantities such as fracture stress or fracture toughness .These relationships depend strongly on the mechanical properties of the adhesive, and in this work we focus on highly crosslinked, glassy structural adhesives. These relationships are clearly important from the standpoint of designing interfacial chemistry sufficient to provide the level of mechanical strength required for a particular application. However, as has been recognized for some time, a relatively low level of interface strength is sufficient to produce strong joints, and in general joint strength is not limited by interfacial chemistry. On the other hand, it is very important to be able to identify the relatively rare cases when interfacial interactions may be a factor. Interfacial interactions can be important even for strong joints, as loading conditions may force cracks to initiate or propagate along a bimaterial interface. Traction separation laws are being investigated as a method for describing interfacial separation in such cases. The predictions resulting form this approach depend strongly upon the local stress that can be supported by the interfacial interactions, along with other factors. Finally, the in-plane distribution of interfacial interactions is important from the standpoint of stress concentration. Regions of an interface lacking strong specific interactions will not carry load, resulting in a concentration of load over the remaining area. Important questions remain to be answered regarding the conditions for flaw sensitive fracture behavior, such as how the magnitude of stress concentration and crack initiation are related to the in-plane distribution of interactions, the mechanical properties of the adhesive, and the mode of loading. To address these questions, we have been employing a model experimental system involving an epoxy adhesive on smooth substrates coated with self-assembling monolayers. Several methods are used to vary the nature and in-plane distribution of interfacial interactions. Lithography is used to deposit self-assembling monolayers (SAMs) of octadecyltrichlorosilane (ODTS) into domains of various sizes. Mixed monolayers of methyl terminated molecules and molecules terminated with various functional groups are used to vary the number density of strongly interacting sites as well as the nature of the strong interaction (covalent, ionic, hydrogen bonding, and polar) with an epoxy. In this way a range of interface strength is achieved that covers most, if not all, engineering systems and specific details can be examined quantitatively. A wide range of fracture tests are employed to study both fracture stress and fracture toughness. Below we report results from one of these studies. We deposited mixed monolayers of dodecytrichlorosilane (DDTS) and 1-bromo-11-undecyltrichlorosilane (BrUTS) at variable composition onto silicon wafers and quartz rods. The epoxy interacts with the bromine on BrUTS through specific ionic interactions, but interacts through only weak van der Waals (VDW) interactions with the methylated tails of the DDTS molecules. Fracture studies are reported below using the napkin-ring (NR, pure shear) and cruciform (CR, predominantly tensile) geometries. We then use the temperature dependence of the fracture stress to map the interface strength of several engineering systems onto the model system.
机译:胶粘剂科学长期关注的一个问题是了解基本界面相互作用的性质和空间分布与工程断裂量(如断裂应力或断裂韧性​​)之间的关系,这些关系在很大程度上取决于胶粘剂的机械性能,在这种情况下我们的工作重点是高度交联的玻璃状结构胶。从设计足以提供特定应用所需的机械强度水平的界面化学的观点来看,这些关系显然很重要。但是,正如一段时间以来所认识到的,相对较低的界面强度足以产生牢固的接头,并且通常接头强度不受界面化学的限制。另一方面,当界面相互作用可能是一个重要因素时,能够识别相对罕见的情况非常重要。即使对于牢固的接头,界面相互作用也很重要,因为加载条件可能会迫使裂纹沿着双材料界面引发或扩展。正在研究牵引分离定律作为描述这种情况下界面分离的方法。通过这种方法得出的预测结果在很大程度上取决于界面相互作用以及其他因素所支持的局部应力。最后,从应力集中的角度来看,界面相互作用的面内分布很重要。界面中缺乏强特定相互作用的区域将不会承载负载,从而导致负载集中在剩余区域上。关于缺陷敏感性断裂行为的条件,例如应力集中和裂纹萌生的程度与相互作用的面内分布,粘合剂的机械性能以及加载方式之间的关系,还有待解决的重要问题。为了解决这些问题,我们一直在使用模型实验系统,该系统涉及在涂有自组装单层膜的光滑基材上的环氧胶粘剂。有几种方法可以用来改变界面相互作用的性质和面内分布。光刻用于将十八烷基三氯硅烷(ODTS)的自组装单层(SAM)沉积到各种尺寸的区域中。甲基封端的分子和被各种官能团封端的分子的混合单分子层用于改变强相互作用位点的数量密度以及与环氧树脂的强相互作用(共价,离子,氢键和极性)的性质。通过这种方式,可以实现涵盖大多数(如果不是全部)工程系统的界面强度范围,并且可以定量检查具体细节。广泛的断裂试验用于研究断裂应力和断裂韧性。下面我们报告其中一项研究的结果。我们将十二烷基三氯硅烷(DDTS)和1-溴-11-十一烷基三氯硅烷(BrUTS)的混合单层以可变的组成沉积到硅片和石英棒上。环氧树脂通过特定的离子相互作用与BrUTS上的溴相互作用,但仅通过与DDTS分子的甲基化尾巴之间的弱范德华(VDW)相互作用而相互作用。下文报道了使用餐巾环(NR,纯剪切)和十字形(CR,主要是拉伸)几何形状进行的断裂研究。然后,我们使用断裂应力的温度依赖性将几个工程系统的界面强度映射到模型系统上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号