【24h】

An Observable Protein Crystal Growth Apparatus for Studying the Effects of Microgravity on Protein Crystallization

机译:一种可观察的蛋白质晶体生长设备,用于研究微重力对蛋白质结晶的影响

获取原文

摘要

Macromolecular crystals during their growth, incorporate an extensive array of impurities which vary from individual molecules to large particles, and even microcrystals in the micron size range. AFM (atomic force microscopy) along with X-ray topology has shown that the density of defects and faults in most macromolecular crystals is several orders of magnitude higher than in conventional crystals. High defect and impurity density contributes, in turn, to a deterioration of both the mechanical and diffraction properties of crystals, thereby lessening their value for structural biology. In microgravity, access by impurities and aggregates to growing crystal surfaces is restricted due to the elimination of convention and to altered fluid transport properties. We designed, and have now completed construction of an instrument, the OPCGA (Observable Protein Crystal Growth Apparatus) that employs a fused optics, phase shift, Mach-Zehnder interferometer, along with polarized light, time lapse video microscopy to analyze the fluid environment around growing crystals. Using this device, which will ultimately be deployed on the International Space Station, we have, in thin cells on Earth, succeeded in directly visualizing macromolecule concentration gradients around growing protein crystals. This provides the first direct evidence that quasi-stable depletion zones formed around growing crystals in space may explain the improved quality of macromolecular crystals grown in microgravity. Further application of the interferometric technique will allow us to quantitatively describe the shapes, extent, and magnitudes of the concentration gradients and to evaluate their degree of stability. The OPCGA ultimately will be used by the broad crystal growth community to study, and quantitatively describe the development of a vast range of macromolecular crystals. This will hav a significant impact on our understanding of crystal growth phenomena and our ability to improve and control the process on earth.
机译:大分子晶体在其生长过程中会掺入各种杂质,这些杂质的范围从单个分子到大颗粒,甚至是微米尺寸范围内的微晶。原子力显微镜(AFM)和X射线拓扑显示,大多数大分子晶体的缺陷和断层密度比传统晶体高几个数量级。较高的缺陷和杂质密度反过来又导致晶体的机械和衍射性能下降,从而降低了其对结构生物学的价值。在微重力中,由于消除了常规和改变了流体的输送特性,杂质和聚集体进入生长的晶体表面受到了限制。我们设计并完成了仪器OPCGA(可观察到的蛋白质晶体生长仪器)的构建,该仪器采用了融合光学,相移,马赫曾德尔干涉仪以及偏振光,延时视频显微镜来分析周围的流体环境。生长的晶体。使用最终将部署在国际空间站上的这种设备,我们已经在地球上的薄细胞中成功地直接看到了正在生长的蛋白质晶体周围的大分子浓度梯度。这提供了第一个直接的证据,即在太空中生长的晶体周围形成的准稳定的耗尽区可以解释在微重力下生长的大分子晶体质量的提高。干涉技术的进一步应用将使我们能够定量地描述浓度梯度的形状,程度和大小,并评估其稳定性。 OPCGA最终将被广泛的晶体生长社区用来研究,并定量描述各种大分子晶体的发展。这将对我们对晶体生长现象的理解以及我们改善和控制地球过程的能力产生重大影响。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号