首页> 外文会议>Proceedings of the Combustion Institute >ANALYSIS OF AN ELEMENTARY REACTION MECHANISM FOR BENZENE OXIDATION IN SUPERCRITICAL WATER
【24h】

ANALYSIS OF AN ELEMENTARY REACTION MECHANISM FOR BENZENE OXIDATION IN SUPERCRITICAL WATER

机译:超临界水中苯氧化的基本反应机理分析

获取原文

摘要

A benzene supercritical water oxidation (SCWO) mechanism, based on published low-pressure benzene combustion mechanisms and submechanisms describing the oxidation of key intermediates, was developed and analyzed to determine the controlling reactions under SCWO conditions of 750-860 K, 139-278 bar, and equivalence ratios from 0.5 to 2.5. To adapt the combustion mechanisms to the lower temperature (<975 K) and higher pressure (>220 bar) conditions, new reaction pathways were added, and quantum Rice-Ramsperger-Kassel theory was used to calculate the rate coefficients and, hence, product selectivities for pressure-dependent reactions. The most important difference between the benzene oxidation mechanism for supercritical water conditions and those for combustion conditions is reactions in supercritical water involving C_6H_5OO predicted to be formed by C_6H_5 reacting with O_2. Through the adjustment of the rate coefficients of two thermal decomposition pathways of C_6H_5OO, whose values are unknown, the model accurately predicts the measured benzene and phenol concentration profiles at 813 K, 246 bar, stoichiometric oxygen, and 3―7 s residence time and reproduces the finding that the carbon dioxide concentration exceeds that of carbon monoxide at all reaction conditions and levels of benzene conversion. Comparison of the model predictions to benzene SCWO data measured at several different conditions reveals that the model qualitatively explains the trends of the data and gives good quantitative agreement without further adjustment of rate coefficients.
机译:开发并分析了一种基于发表的低压苯燃烧机制和描述关键中间体氧化的氧化的苯超临界水氧化(SCWO)机制,以确定SCWO条件下的控制反应,1350-860 K,139-278巴,0.5至2.5的等效比率。为了使燃烧机制适应较低温度(<975 k)和更高的压力(> 220巴)条件,加入了新的反应途径,并且使用量子稻米 - 拉姆斯伯 - 卡塞理论用于计算速率系数,因此,产品压力依赖性反应的选择性。超临界水条件的苯氧化机理和用于燃烧条件的那些的最重要差异是涉及C_6H_5OO的超临界水反应预测通过与O_2反应形成的C_6H_5。通过调节C_6H_5OO的两个热分解途径的速率系数,其值未知,该模型精确地预测813k,246巴,化学计量氧和3-7秒的测量的苯和酚浓度分布和3-7秒的停留时间并再现发现二氧化碳浓度在所有反应条件下超过一氧化碳的发现和苯转化水平。在几个不同条件下测量的苯Scwo数据的模型预测的比较表明,该模型定性地解释了数据的趋势,并提供了良好的定量协议,而无需进一步调整速率系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号