首页> 外文会议>Photosensitive Optical Materials and Devices >Optical switching through photoisomerization: basics of the mechanism in rhodopsin and stilbene
【24h】

Optical switching through photoisomerization: basics of the mechanism in rhodopsin and stilbene

机译:通过光异构化进行光交换:视紫红质和二苯乙烯中的机理基础

获取原文

摘要

Abstract: Vertebrate vision is based on the unique conversion of light into nerve impulses. Detailed understanding of the primary photochemical events is important with respect to potential applications in molecular optoelectronic devices. In our studies we apply modern theory, computer simulations, and experimental knowledge to develop new understanding of the photochemical processes and ultimately devise means to control their outcome. We use a combination of quantum theory and quasiclassical calculations to model excitation with laser pulses, excited state dynamics, internal conversion, and relaxation to photoproducts. In rhodopsin, the primary photochemical event involves an 11-cis to 11- trans photoisomerization. Recent time-resolved measurements provide the time-scales for disappearance of the reactant and the appearance of products. We find microscopical details of the internal conversion which are in accordance with the experimental results. This new perspective to the microscopic mechanism reveals the optimization of the electronic structure achieved in evolutionary development in nature. Cis-Stilbene is studied as a model system for which a double resonance laser excitation can be used for influencing the reaction. UV excitation leads to two photoproducts, trans-stilbene and dihydrophenanthrene (DHP). We show that IR excitation can be used to prepare ground sate cis-stilbene in an appropriate vibrational state before electronic excitation. We find that excitation of some modes leads to up to 4.5 times increase in the quantum yield of DHP or up to 4 times increase in trans-stilbene. Because of the shifted absorption spectra of the products, if such system is realized experimentally it can be used as switching bistable device. !17
机译:摘要:脊椎动物的视觉是基于光到神经冲动的独特转换。对于分子光电子器件中的潜在应用,对主要光化学事件的详细理解很重要。在我们的研究中,我们运用现代理论,计算机模拟和实验知识来发展对光化学过程的新理解,并最终设计出控制其结果的方法。我们使用量子理论和准经典计算的组合来模拟激光脉冲的激发,激发态动力学,内部转换以及光产物的弛豫。在视紫红质中,主要的光化学事件涉及11-顺式至11-反式光异构化。最近的时间分辨测量提供了反应物消失和产物外观的时间尺度。我们发现内部转化的微观细节与实验结果一致。微观机制的这一新观点揭示了自然进化发展中实现的电子结构的优化。研究了顺式-顺丁烯作为模型系统,其中双共振激光激发可用于影响反应。紫外线激发产生两种光产物,反式二苯乙烯和二氢菲(DHP)。我们表明,在电子激发之前,IR激发可用于以适当的振动状态制备地面状态的顺式-1,2-二苯乙烯。我们发现某些模式的激发会导致DHP的量子产率提高多达4.5倍,反式二苯乙烯的增长高达4倍。由于产物的吸收光谱移动,如果通过实验实现该系统,则其可以用作开关双稳态装置。 !17

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号