首页> 外文会议>Ophthalmic Technologies VI >Biophysical considerations for optimizing energy delivery during Erbium:YAG laser vitreoretinal surgery
【24h】

Biophysical considerations for optimizing energy delivery during Erbium:YAG laser vitreoretinal surgery

机译:在Erbium:YAG激光玻璃体视网膜手术中优化能量输送的生物物理考虑

获取原文

摘要

Abstract: Er:YAG laser-mediated tissue disruption and removal results from both direct ablation and the acousto-mechanical sequelae of explosive vaporization of the tissue water. We investigated the scaling laws for photoablative and photodisruptive interactions, and interpret these results towards optimizing energy delivery for vitreoretinal surgical maneuvers. Experimental studies were performed with a free-running Er:YAG laser (100 - 300 microseconds FWHM, 0.5 - 20 mJ, 1 - 30 Hz). Energy was delivered by fiberoptic to a custom-made handpiece with a 75 - 600 micrometer quartz tip, and applied to excised, en bloc samples of bovine vitreous or model systems of saline solution. Sample temperature was measured with 33 gauge copper- constantan thermocouples. Expansion and collapse of the bubble following explosive vaporization of tissue water was optically detected. The bubble size was calculated from the period of the bubble oscillation and known material properties. A model for bubble expansion is presented based on energy principles and adiabatic gas expansion. Pressure transients associated with bubble dynamics are estimated following available experimental and analytical data. The temperature rise in vitreous and model systems depends on the pulse energy and repetition rate, but is independent of the probe-tip diameter at constant laser power; at moderate repetition rates, the temperature rise depends only on the total energy (mJ) delivered. The maximum bubble diameter increases as the cube root of the pulse energy with a reverberation period of 110 microseconds and a maximum bubble diameter of 1.2 mm following one mJ delivery to saline through a 100 micrometer tip. Our modeling studies generate predictions similar to experimental data and predicts that the maximum bubble diameter increases as the cube root of the pulse energy. We demonstrate that tissue ablation depends on radiant exposure (J/cm$+2$/), while temperature rise, bubble size, and pressure depends on total pulse energy. Further, we show that mechanical injury should be minimized by delivering low pulse energy, through small diameter probe tips, at high repetition rates. These results allow for optimization strategies relevant to achieving vitreoretinal surgical goals while minimizing the potential for unintentional injury. !23
机译:摘要:Er:YAG激光介导的组织破坏和清除是直接消融和组织水爆炸性汽化的声机械后遗症造成的。我们研究了光烧蚀和光破坏性相互作用的尺度定律,并解释了这些结果,以优化玻璃体视网膜手术的能量传递。实验研究是使用自由运行的Er:YAG激光器(100-300微秒FWHM,0.5-20 mJ,1-30 Hz)进行的。能量通过光纤传递到具有75-600微米石英尖端的定制手机中,并应用于牛玻璃体或盐溶液模型系统的整块样本中。用33号铜-铜常数热电偶测量样品温度。用光学方法检测到组织水爆炸蒸发后气泡的膨胀和破裂。由气泡的振荡周期和已知的材料性能计算气泡的尺寸。提出了一种基于能量原理和绝热气体膨胀的气泡膨胀模型。根据可用的实验和分析数据,估计与气泡动力学相关的压力瞬变。玻璃和模型系统中的温度升高取决于脉冲能量和重复频率,但与恒定激光功率下的探针尖端直径无关;在中等重复频率下,温度升高仅取决于所输送的总能量(mJ)。最大气泡直径随脉冲能量的立方根而增加,其混响时间为110微秒,最大气泡直径为1.2 mm(通过100微米尖端向盐水中注入1 mJ后)。我们的建模研究产生了与实验数据相似的预测,并预测最大气泡直径随着脉冲能量的立方根而增加。我们证明组织消融取决于辐射暴露(J / cm $ + 2 $ /),而温度升高,气泡大小和压力取决于总脉冲能量。此外,我们表明,应通过以高重复率通过小直径探针提供低脉冲能量来最大程度地减少机械损伤。这些结果允许与实现玻璃体视网膜手术目标相关的优化策略,同时最大程度地减少意外伤害的可能性。 !23

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号