首页> 外文会议>AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference;AIAA/ASME adaptive structures forum >Suppression of Nonlinear Flutter of Composite Panels at Supersonic Speeds and Elevated Temperatures
【24h】

Suppression of Nonlinear Flutter of Composite Panels at Supersonic Speeds and Elevated Temperatures

机译:超声速和高温下复合板非线性颤动的抑制

获取原文

摘要

Coupled structure-electrical nonlinear finite element actuator and sensor equations of motion for flutter control are derived for composite panels with embedded piezoelectric layers subjected to aerodynamic, thermal loads and applied electric fields. The von Karman large-deflection strain-displacement relations, quasi-steady first-order piston theory aerodynamics, quasi-steady thermal stress theory and linear piezoelectricity theory are used. Following a modal transformation and reduction, a set of coupled nonlinear modal equations of motion with much smaller degrees-of-freedom is obtained for time domain simulation and controller design. Two controller designs, linear optimal and strain rate feedback, are presented. The controller design is based on the linearized modal equations while the numerical simulations are based upon the nonlinear modal equations. An optimal shape and location of piezoelectric actuator can be determined by using the norms of the optimal feedback control gains (NFCG). A self-sensing actuator is used in the strain rate feedback control design. The performance of panel flutter controller design can be evaluated by the maximum flutter-free dynamic pressures which is defined that the dynamic pressure a vehicle can fly without experiencing flutter with piezoelectric actuation. Numerical simulations show that the maximum flutter-free dynamic pressure can be increased as high as six times of the critical dynamic pressure by using the linear optimal control design. The panel flutter large amplitude limit-cycle motions as well as periodic and chaotic motions at moderate temperatures are shown to be able completely suppressed within the maximum flutter-free dynamic pressure. Flutter suppression on panels with different aspect ratios, boundary conditions, and thermal effects are also investigated. The results reveal that the piezoelectric actuators are effective in nonlinear panel flutter suppression.
机译:推导了结构-电非线性有限元执行器和用于颤振控制的运动传感器方程,该复合板具有承受气动,热载荷和外加电场的嵌有压电层的复合板。使用了von Karman大挠度应变-位移关系,拟稳态一阶活塞理论,空气动力学,拟稳态热应力理论和线性压电理论。经过模态转换和归约后,获得了一组耦合自由度较小的非线性模态运动方程,用于时域仿真和控制器设计。提出了两种控制器设计,线性最优和应变率反馈。控制器设计基于线性模态方程,而数值模拟则基于非线性模态方程。压电致动器的最佳形状和位置可以通过使用最佳反馈控制增益(NFCG)的规范来确定。应变率反馈控制设计中使用了自感应执行器。面板颤振控制器设计的性能可以通过最大无颤动动态压力来评估,该最大无颤动动态压力定义为车辆可以飞行的动压,而不会因压电促动而发生颤动。数值模拟表明,通过使用线性最优控制设计,最大无颤动动压可以增加到临界动压的六倍之多。面板颤动的大幅度极限循环运动以及在中等温度下的周期性运动和混沌运动被证明可以完全抑制在最大无颤动动压力范围内。还研究了具有不同纵横比,边界条件和热效应的面板上的颤动抑制。结果表明,压电致动器在抑制非线性面板颤动方面是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号