首页> 外文会议>Conference on Infrared Technology and Applications >Exploration of uncooled quantum infrared detectors based on quantum dots/graphene heterostructures
【24h】

Exploration of uncooled quantum infrared detectors based on quantum dots/graphene heterostructures

机译:基于量子点/石墨烯异质结构的非冷却量子红外探测器的探索

获取原文

摘要

Heterojunction nanohybrids based on low-dimension semiconductors, including colloidal quantum dots (QDs) and 2D atomic materials (graphene, transition metal chalcogenides, etc) provide a fascinating platform to design of new photonic and optoelectronic devices that take advantages of the enhanced light-solid interaction attributed to their strong quantum confinement and superior charge mobility for uncooled photodetectors with a high gain up to 10~(10). In these heterojunction nanohybrids, the van der Waals (vdW) interface plays a critical role in controlling the optoelectronic process including exciton dissociation by the interface built-in field that drives the follow-up charge injection and transport to graphene. In this paper, we present our recent progress in development of such heterostructures nanohybrids for uncooled infrared detectors including PbS and FeS_2 QDs/graphene and 2D vdW heterostructures MoTe_2/Graphene/SnS_2 and GaTe/InSe. We have found that nonstoichiometric Fe_(1-x)S_2 QDs (x = 0.01-0.107) with strong localized surface plasmonic resonance (LSPR) can have much enhanced absorption in broadband from ultraviolet to short-wave infrared (SWIR, 1-3 μm). Consequently, the LSPR Fe_(1-x)S_2 QDs/graphene heterostructure photodetectors exhibit extraordinary photoresponsivity in exceeding 4.32 × 10~6 A/W and figure-of-merit detectivity D* > 7.50 × 10~(12) Jones in the broadband of UV-Vis-SWIR at room temperature. The 2D vdW heterostructures allows novel designs of interface band alignments with uncooled NIR-SWIR D* up to 10~(12) Jones. These results illustrate that the heterostructure nanolybrids provide a promising pathway for low-cost, printable and flexible infrared detectors and imaging systems.
机译:基于低维半导体的异质结纳米混合体,包括胶体量子点(QD)和2D原子材料(石墨烯,过渡金属硫属化物等),为设计新的光子和光电器件提供了一个引人入胜的平台,这些器件利用了增强的光固性它们的相互作用归因于它们的强量子限制和出色的电荷迁移率,这些非电荷能动的光电探测器具有高达10〜(10)的高增益。在这些异质结纳米杂化物中,范德华(vdW)界面在控制光电过程中起着至关重要的作用,包括通过界面内置场驱动激子注入并传输至石墨烯的激子离解。在本文中,我们介绍了用于非冷却红外探测器的此类异质结构纳米杂交体的最新进展,包括PbS和FeS_2 QDs /石墨烯以及2d vdW异质结构MoTe_2 / Graphene / SnS_2和GaTe / InSe。我们已经发现,具有强局部表面等离子体共振(LSPR)的非化学计量Fe_(1-x)S_2 QDs(x = 0.01-0.107)可以从宽带到紫外光到短波红外光(SWIR,1-3μm)大大增强吸收)。因此,LSPR Fe_(1-x)S_2 QDs /石墨烯异质结构光电探测器在超过4.32×10〜6 A / W时表现出非凡的光响应性,并且品质因数D *> 7.50×10〜(12)Jones在宽带中室温下的紫外-可见-SWIR分析。二维vdW异质结构允许对未冷却的NIR-SWIR D *高达10〜(12)Jones的界面带排列进行新颖的设计。这些结果说明,异质结构纳米杂化物为低成本,可打印和灵活的红外探测器和成像系统提供了有希望的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号