首页> 外文会议>Annual international conference on the theory and applications of cryptographic techniques >Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats
【24h】

Integral Matrix Gram Root and Lattice Gaussian Sampling Without Floats

机译:整数矩阵克根和无浮点的格子高斯采样

获取原文

摘要

Many advanced lattice based cryptosystems require to sample lattice points from Gaussian distributions. One challenge for this task is that all current algorithms resort to floating-point arithmetic (FPA) at some point, which has numerous drawbacks in practice: it requires numerical stability analysis, extra storage for high-precision, lazy/backtracking techniques for efficiency, and may suffer from weak determinism which can completely break certain schemes. In this paper, we give techniques to implement Gaussian sampling over general lattices without using FPA. To this end, we revisit the approach of Peikert, using perturbation sampling. Peikert's approach uses continuous Gaussian sampling and some decomposition Σ = AA~t of the target covariance matrix Σ. The suggested decomposition, e.g. the Cholesky decomposition, gives rise to a square matrix A with real (not integer) entries. Our idea, in a nutshell, is to replace this decomposition by an integral one. While there is in general no integer solution if we restrict A to being a square matrix, we show that such a decomposition can be efficiently found by allowing A to be wider (say n × 9n). This can be viewed as an extension of Lagrange's four-square theorem to matrices. In addition, we adapt our integral decomposition algorithm to the ring setting: for power-of-2 cyclotomics, we can exploit the tower of rings structure for improved complexity and compactness.
机译:许多基于高级晶格的密码系统都需要从高斯分布中采样晶格点。这项任务面临的挑战是,目前所有的算法都在某种程度上诉诸于浮点算术(FPA),这在实践中有许多弊端:它需要数值稳定性分析,用于高精度的额外存储,效率高的延迟/回溯技术,并且可能会遭受确定性薄弱的问题,这可能会完全破坏某些方案。在本文中,我们给出了在不使用FPA的情况下对普通晶格实施高斯采样的技术。为此,我们使用扰动采样重新研究了Peikert的方法。 Peikert的方法使用连续的高斯采样和目标协方差矩阵Σ的一些分解∑ = AA〜t。建议的分解,例如Cholesky分解会产生一个带有实数(非整数)项的方阵A。简而言之,我们的想法是用一个整体分解来代替这种分解。虽然通常如果将A限制为方矩阵,则没有整数解,但我们表明,通过使A变宽(例如n×9n),可以有效地发现这种分解。这可以看作是拉格朗日四平方定理对矩阵的扩展。此外,我们将积分分解算法调整为环的设置:对于2幂幂的环学,我们可以利用环的塔结构来提高复杂性和紧凑性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号