【24h】

Quantum logic programming with Weyl predicates

机译:Quantum Logic编程用Weyl谓词

获取原文

摘要

In our previous work we described quantized computation using Horn clauses and based the semantics, dubbed as entanglement semantics as a generalization of denotational and distribution semantics, and founded it on quantum probability by exploiting the key insight classical random variables have quantum decompositions. Towards this end we built a Hilbert space of H-interpretations and a corresponding non commutative von Neumann algebra of bounded linear operators.In this work we extend the formalism using second-quantized Horn clauses that describe processes such as Heisenberg evolutions in optical circuits, quantum walks, and quantum filters in a formally verifiable way. Our goal is to build a model of computation based on logic via Currry-Howard correspondence. Towards this end we can think of completely positive *-unital maps of Horn clauses as function types representing modus ponens (equation (19)). Recursions that result from inductive reasoning has a quantum analogue in terms of sequence of *-homomorphisms induced by completely positive *-unital maps (equation (18)). We base our system on a measure theoretic approach to handle infinite dimensional systems and demonstrate the expressive power of the formalism by casting an algebra used to describe interconnected quantum systems (QNET) in this language. The variables of a Horn clause bounded by universal or existential quantifiers can be used to describe parameters of optical components such as beam splitter scattering paths, cavity detuning from resonance, strength of a laser beam, or input and output ports of these components. Prominent clauses in this non commutative framework are Weyl predicates, that are operators on a Boson Fock space in the language of quantum stochastic calculus, martingales and conjugate Brownian motions compactly representing statistics of quantum field fluctuations. We formulate theorem proving as a quantum stochastic process in Heisenberg picture of quantum mechanics, a sequence of goals to be proved, using backward chaining.
机译:在我们之前的工作中,我们描述了使用喇叭子句的量化计算,并基于语义,称为entantlement语义作为指定和分布语义的概括,并通过利用关键洞察经典随机变量来创立量子概率上的量子概率具有量子分解。在此目的,我们建立了一个H-Procentations的Hilbert空间,以及相应的非换向von neumann代数的有界线性运营商。在这项工作中,我们使用第二量化的喇叭条款扩展了形式主义,这些喇叭条款描述了诸如Heisenberg在光学电路中的Heisenberg演进等过程中的过程中的形式主义以正式可验证的方式走路和量子过滤器。我们的目标是通过Curry-Howard对应基于逻辑构建计算模型。迄今为止,我们可以考虑喇叭子句的完全正面的*形话地图作为代表Modus Ponens的功能类型(公式(19))。感应推理导致的递归在由完全阳性* - 企业地图诱导的α-晶体术方面具有量子模拟(方程(18))。我们将系统基于测量的理论方法,以处理无限尺寸系统,并通过铸造用于描述这种语言的互联量子系统(QNet)的代数来展示形式主义的表现力。由通用或存在量子指数限定的喇叭子句的变量可用于描述光学部件的参数,例如光束分离器散射路径,腔从谐振,激光束的强度的腔体,或这些部件的输入和输出端口。这种非换向框架中的突出条款是Weyl谓词,是玻色子福音空间的运营商,以量子随机微积分,Martingales和Concuzate Brownian Motions的语言,紧凑地代表量子场波动的统计数据。我们将定理制定了作为量子随机过程中的Quantum Mechence的图片,通过向后链接证明了一系列目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号