首页> 外文会议>International Congress and Exposition on Noise Control Engineering >Numerical prediction of tip vortex cavitation noise of underwater propellers using RANS solver, bubble dynamics and acoustic analogy
【24h】

Numerical prediction of tip vortex cavitation noise of underwater propellers using RANS solver, bubble dynamics and acoustic analogy

机译:rans求解器,泡沫动力学和声学类尖端螺旋桨尖端涡流噪声噪声的数值预测

获取原文

摘要

In this study, tip vortex cavitation noise of underwater propeller is predicted using a one-way coupled method consisting of RANS solvers, bubble dynamics model, and the acoustic analogy. First, the hydrodynamic flow field around the underwater propeller is predicted by using the RANS solver. The tip-vortex structure is reconstructed by applying the vortex model in association with the flow field obtained from the RANS solver because the tip vortex suffers from being dissipated by the numerical damping intrinsic to the numerical scheme. Before the vortex model is applied, the vortex core location is identified using the minimum λ_2 criterion. The magnitude of the modeled vortex is determined by using the circulation of the local flow field around the identified vortex core near the tip of the propeller blades. Then, the bubble dynamics model is employed to predict tip-vortex cavitation. The initial nuclei distribution is adjusted to represent the quality of water used in the corresponding experiment. The Keller-Herring and the bubble trajectory equations are solved to predict the volume and the location of each nucleus in the hydrodynamic flow field, respectively. Finally, cavitation noise is predicted by considering each nucleus as a point monopole source. The propeller, named HSP17, is newly designed and manufactured to provide benchmarking data, especially for the effects of the skew angles on the tip-vortex cavitation. The proposed numerical method is applied to predict the tip-vortex cavitation inception and noise of the HSP17. The entire body of submarine is also included to account for the effects of the boundary layer flow of the body upstream on the tip-vortex cavitating flow of the HSP17 downstream. The validity of the present numerical approach is confirmed by comparing the numerical results with the experimental ones.
机译:在这项研究中,使用由Rans溶剂,泡沫动力学模型和声学类别组成的单向耦合方法来预测水下螺旋桨的尖端涡流空化噪声。首先,通过使用RAN求解器来预测水下螺旋桨周围的流体动力流场。通过将涡流模型与从RAN求解器获得的流场相关联地重建尖端涡旋结构,因为尖端涡流受到数值阻尼固有的数值方案来消散。在应用Vortex模型之前,使用最小λ_2标准识别涡旋核心位置。通过使用局部流场周围的局部涡流芯围绕螺旋桨叶片的尖端附近的局部流动的循环来确定建模的涡流的大小。然后,采用气泡动力学模型来预测尖端涡旋空化。调整初始核分布以表示相应实验中使用的水的质量。求解凯勒 - 鲱鱼和气泡轨迹方程以分别预测流体动力场中每个核的体积和位置。最后,通过将每个核视为点单极源来预测空化噪声。名为HSP17的螺旋桨是新设计和制造的,以提供基准数据,特别是对于倾斜角度对尖端涡旋空化的影响。施加了拟议的数值方法以预测HSP17的尖端涡旋空化初始化和噪声。还包括整个潜艇的身体,以解释身体的边界层流动在下游的HSP17的尖端涡旋空腔流动上游的影响。通过将数值结果与实验结果进行比较来确认当前数值方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号