首页> 外文会议>North American Thermal Analysis Society conference >Chemical Reaction Sequences for High Explosive Thermal Explosion Models
【24h】

Chemical Reaction Sequences for High Explosive Thermal Explosion Models

机译:高爆炸热爆炸模型的化学反应序列

获取原文
获取外文期刊封面目录资料

摘要

When a high explosive charge is subjected to an intentional or unintentional thermal insult, it is essential to ba able to predict if, when, and where in the charge a thermal runaway reaction will occur. An evaluation of the violence of the runaway reaction needs to be quickly made to advise personnel and first responders in their possible actions. Main charge explosives ar eusually organic materials with 20 to 30 atoms per molecule, which decompose into 7 to 10 moles of gases such as water, carbon dioxide, carbon monoxide, nitrogen, etc. and some solid carbon particles, releasing over 1kcal/g of chemical energy in less than one second after an induction time varies widely from minutes to days with the heating rate caused by the insult. Since a molecule with 20 to 30 atoms cannot transfrom into 7 to 10 smaller molecules in one chemical reaction, the sequence of endothermic bond breaking and exothermic bond formation reactions plus their individual chemical kinetic and thermal properties need to be known as well as possible. Experimental measuremnets of all the possible chemical reaction rates are very difficult and have not been forthcoming as rapidly for solid and liquid explosives as they have for gaseous explosives. So reduced sets of global reaction rate model have been developed based on the available chemical kinetic and thermal property data on the important stages of the decomposition process. This presentation reviews some of the three to seven reaction rate models developed at LLNL, the experimental techniques used to measure basic kinetic and thermal data, the thermal explosion experiments used to obtain times to explosion, locations of the initial runaway reaction, and indications of the violence of the resulting explosions. Several laboratories have contributed to solving this difficult problem: LLNL's ODTX and STEX tests plus modeling; Sandia National Laboratory's SITI test and modeling; LANL's cylindrical heat transfer and explosion test, proton radiography experiments, and modeling; and many other laboratories. Indivduals and groups, such as Ray Rogers (LANL), Tom Brill (University of Delaware), Rich Behrens (Sandia Livermore) developed apparatuses that yielded kinetic rates and species formation sequences that greatly increased the ability to model chemical energy release rates. These and many other efforts have given us a greatly improved undertsanding of the global thermal transfer properties and chemical decomposition kinetics of solid explosives compared to forty years ago. New explosives molecules are always being synthesized, and new uses for explosives are developing. More basic chemical kinetic research is definitely required to build more predictive models.
机译:当高炸药装药受到有意或无意的热侵害时,必须能够预测装药中是否会发生热失控反应,何时何地发生热失控反应。需要迅速评估失控反应的暴力程度,以向人员和急救人员提供可能的行动建议。主装药炸药通常是有机分子,每分子具有20至30个原子,可分解为7至10摩尔的气体,例如水,二氧化碳,一氧化碳,氮气等,以及一些固体碳颗粒,释放出超过1kcal / g的碳。诱导时间后不到一秒的化学能随侮辱引起的升温速率从数分钟到数天变化很大。由于具有20至30个原子的分子无法在一个化学反应中转变为7至10个较小的分子,因此,必须尽可能了解吸热键断裂和放热键形成反应的顺序,以及它们各自的化学动力学和热学性质。具有所有可能的化学反应速率的实验测量网络非常困难,而且对于固体和液体炸药,其发展速度还不及对气体炸药的迅速发展。因此,根据分解过程重要阶段的可用化学动力学和热学性质数据,开发了简化的全局反应速率模型集。本演讲回顾了LLNL开发的三至七个反应速率模型,用于测量基本动力学和热学数据的实验技术,用于获得爆炸时间的热爆炸实验,初始失控反应的位置以及反应机理的指示。暴力导致爆炸。有几个实验室为解决这一难题做出了贡献:LLNL的ODTX和STEX测试以及建模;桑迪亚国家实验室的SITI测试和建模; LANL的圆柱热传递和爆炸测试,质子射线照相实验和建模;和许多其他实验室。 Ray Rogers(LANL),Tom Brill(特拉华大学),Rich Behrens(Sandia Livermore)等个人和团体开发了产生动力学速率和物种形成序列的仪器,极大地提高了对化学能释放速率进行建模的能力。与四十年前相比,这些努力以及其他许多努力使我们对固体炸药的整体热传递特性和化学分解动力学有了更深刻的了解。新的爆炸物分子一直在合成,并且爆炸物的新用途正在发展。为了建立更多的预测模型,绝对需要更多的基础化学动力学研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号