首页> 外文会议>Annual Vertical Flight Society forum and technology display >Intelligent Propulsion Materials for Rotorcraft Gas Turbine Engine Component Applications
【24h】

Intelligent Propulsion Materials for Rotorcraft Gas Turbine Engine Component Applications

机译:旋翼燃气涡轮发动机零部件应用的智能推进材料

获取原文

摘要

Rotorcraft gas turbine engines are subject to sand particle ingestion problems during take-off, landing, and hovering operations in sandy desert regions. Although most of the rotorcraft gas turbine engines are fitted with inertial particle separators, they are not efficient in filtering out fine sand particles of size of 75 microns or below. Inlet barrier filters may be efficient in filtering fine particles in the intake air-flow, but they cause engine power loss penalty due to significantly high inlet pressure losses. The sand particles in the air-flow cause severe erosion damage on compressor blades, and molten sand glazing coupled with Calcia-Magnesia-Alumino-Silicates (CMAS) attack on hot-section turbine blades. Due to particle impacts and CMAS attack, the coatings on the blades wear out, form cracks and delaminate over time causing huge maintenance burden for rotorcraft gas turbine engines operating in sandy regions. The objective of this research is to discover a revolutionary, in-situ sensing material system that is capable of monitoring the health of propulsion component materials using co-doped luminescent materials in the erosion resistant coatings or thermal barrier coatings (TBCs) of engine components. This paper presents the research efforts and results from the CCDC — Army Research Laboratory, Vehicle Technology Directorate Director's seedling initiative project that investigated the effectiveness of triboluminescent materials interspersed with blade coatings in a layered form for detecting cracks/fractures that may occur in blade coatings due to sand particle exposure under engine relevant conditions. Use of appropriate instrumentations for in-situ luminescence detection methods to identify cracks/fractures in coatings is also discussed.
机译:旋翼飞机的燃气涡轮发动机在沙质沙漠地区的起飞,着陆和盘旋过程中会遇到沙粒摄入问题。尽管大多数旋翼飞机燃气涡轮发动机都配备了惯性颗粒分离器,但它们并不能有效地过滤出尺寸为75微米或更小的细砂颗粒。进气屏障过滤器可能会有效过滤进气流中的细颗粒,但由于进气压力损失过高,它们会导致发动机功率损失损失。气流中的沙粒会对压缩机叶片造成严重的侵蚀破坏,熔融的沙釉与Calcia-Magnesia-Alumino-Silicates(CMAS)结合在一起会侵蚀热段涡轮叶片。由于颗粒的撞击和CMAS的侵蚀,叶片上的涂层会随着时间的流逝而磨损,形成裂纹和分层,从而给在沙质地区运行的旋翼燃气涡轮发动机带来巨大的维护负担。这项研究的目的是发现一种革命性的现场传感材料系统,该系统能够在发动机部件的耐腐蚀涂层或隔热涂层(TBC)中使用共掺杂的发光材料来监测推进部件材料的健康状况。本文介绍了CCDC的研究工作和结果-陆军研究实验室,车辆技术总局局长的幼苗计划项目,该研究调查了以层状形式散布有叶片涂层的摩擦发光材料对检测叶片涂层中可能出现的裂纹/断裂的有效性。在发动机相关条件下将砂粒暴露出来。还讨论了使用适当的仪器进行原位发光检测方法以识别涂层中的裂纹/断裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号