首页> 外文会议>Annual Vertical Flight Society forum and technology display >Drivetrain Influence on the Blade Loads of Hingeless Helicopter Rotors
【24h】

Drivetrain Influence on the Blade Loads of Hingeless Helicopter Rotors

机译:传动系统对无铰链直升机旋翼叶片载荷的影响

获取原文

摘要

The impact of structural rotor-drivetrain interaction on the blade loads of the Bo 105 helicopter is investigated by numerical simulation. For this purpose, the constraint of constant rotor hub speed is dropped and a drivetrain model, consisting of discrete inertia elements and intermediate flexible elements, is connected to the hub. The structural rotor-drivctrain system is coupled to an acrodynamic model consisting of an analytical formulation of unsteady blade element loads combined with a generalized dynamic wake. A time-marching autopilot trim of the rotor-drivetrain system in wind tunnel configuration is performed for a large blade loading flight state as well as a high advance ratio flight state. The comparison of the simulation results with those of a baseline case (constant rotor hub speed) reveals a major drivetrain influence on the blade lead-lag load harmonics at blade passage frequency. Beside the full drivetrain model, reduced models arc shown to be capable of predicting the drivetrain influence on blade loads, if they yield the same eigenfrequency of the coupled rotor-drivetrain mode ω_(RD_(1.2)) (second collective lead-lag mode couples with drivetrain) as the full model. In a sensitivity analysis, ω_(RD_(1.2)) is varied by modification of the stiffness of a reduced drivetrain model. The resulting changes in blade loads are correlated to ω_(RD_(1.2)), which serves as a simple but accurate classification of the drivetrain regarding its influence on vibratory blade loads. Finally, the improvement of lead-lag load prediction by the application of a drivetrain model is demonstrated through comparison of simulated loads with measurements from a wind tunnel test.
机译:通过数值模拟研究了结构转子-传动系统相互作用对Bo 105直升机叶片载荷的影响。为此,降低了恒定的转子轮毂速度的约束,并且将由离散惯性元素和中间柔性元素组成的动力传动系统模型连接到轮毂。结构转子-驱动系统耦合到一个肢体动力学模型,该模型由非定常叶片单元载荷的分析公式与广义动态尾流相结合组成。对于大叶片负载飞行状态以及高提前比飞行状态,执行风洞配置中的转子-传动系统的时间行进自动驾驶微调。仿真结果与基准情况(转子轮毂转速恒定)的比较结果表明,在叶片通过频率下,动力传动系统对叶片超前-滞后负载谐波的影响很大。除了完整的动力传动系统模型,如果简化模型产生与耦合的转子-动力传动系统模式ω_(RD_(1.2))相同的本征频率(第二集体超前-滞后模式对),则简化的模型可以预测动力传动系统对叶片负载的影响。带有传动系统)作为完整模型。在灵敏度分析中,通过修改简化的传动系统模型的刚度来改变ω_(RD_(1.2))。叶片载荷的最终变化与ω_(RD_(1.2))相关联,ω_(RD_(1.2))可作为传动系统对振动叶片载荷的影响的简单但准确的分类。最后,通过将模拟载荷与风洞试验的测量结果进行比较,证明了通过应用传动系统模型改进的超前-滞后载荷预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号