首页> 外文会议>Asilomar Conference on Signals, Systems, and Computers >Uplink-Downlink Channel Covariance Transformations and Precoding Design for FDD Massive MIMO
【24h】

Uplink-Downlink Channel Covariance Transformations and Precoding Design for FDD Massive MIMO

机译:用于FDD大规模MIMO的上行链路 - 下行链路通道转换和预编码设计

获取原文

摘要

A large majority of cellular networks deployed today make use of Frequency Division Duplexing (FDD) where, in contrast with Time Division Duplexing (TDD), the channel reciprocity does not hold and explicit downlink (DL) probing and uplink (UL) feedback are required in order to achieve spatial multiplexing gain. In order to support massive MIMO, i.e., a very large number of antennas at the base station (BS) side, the overhead incurred by conventional DL probing and UL feedback schemes scales linearly with the number of BS antennas and, therefore, may be very large. In this paper, we present a new approach to achieve a very competitive tradeoff between spatial multiplexing gain and probing-feedback overhead in such systems. Our approach is based on two novel methods: (i)an efficient regularization technique based on Deep Neural Networks (DNN) that learns the Angular Spread Function (ASF) of users channels and permits to estimate the DL covariance matrix from the noisy i.i.d. channel observations obtained freely via UL pilots (UL-DL covariance transformation), (ii) a novel "sparsifying precoding" technique that uses the estimated DL covariance matrix from (i) and imposes a controlled sparsity on the DL channel such that given any assigned DL pilot dimension, it is able to find an optimal sparsity level and a corresponding sparsifying precoder for which the "effective" channel vectors after sparsification can be estimated at the BS with a low mean-square error. We compare our proposed DNN-based method in (i) with other methods in the literature via numerical simulations and show that it yields a very competitive performance. We also compare our sparsifying precoder in (ii) with the state-of-the-art statistical beamforming methods under the assumption that those methods also have access to the covariance knowledge in the DL and show that our method yields higher spectral efficiency since it uses in addition the instantaneous channel information after sparsification.
机译:今天部署的大多数蜂窝网络利用频分双工(FDD)在其中,与时分双工(TDD)相比,信道互惠没有保持和显式下行链路(DL)探测和上行链路(UL)反馈为了实现空间复用增益。为了支持大量的MIMO,即基站(BS)侧的大量天线,传统DL探测和UL反馈方案产生的开销与BS天线的数量线性缩放,因此可能非常大的。在本文中,我们提出了一种新方法来实现在这种系统中的空间多路复用增益和探测器开销之间实现非常竞争的权衡。我们的方法是基于两种新方法:(i)基于深神经网络(DNN)的高效正则化技术,用于学习用户通道的角扩展功能(ASF),并允许从Noisy I.D中估计DL协方差矩阵。通过UL导频(UL-DL协方差转换)自由获得的沟道观察,(ii)一种使用估计的DL协方差矩阵(I)的新型“稀疏预编码”技术,并在DL通道上施加受控的稀疏性,使得给出任何指定的DL先导尺寸,能够找到最佳稀疏度水平和相应的稀疏化预编码器,其可以在具有低平衡误差的BS处估计稀疏后的“有效”通道向量。我们通过数值模拟将我们提出的基于DNN的方法与文献中的其他方法进行比较,并表明它产生了非常竞争力的性能。我们还将我们的稀缺性预编码器与最先进的统计波束形成方法进行比较,假设这些方法还可以访问DL中的协方差知识并表明我们的方法产生了更高的频谱效率另外,稀疏后的瞬时信道信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号