首页> 外文会议>IEEE Electronic Components and Technology Conference >Next Generation of 2-7 Micron Ultra-Small Microvias for 2.5D Panel Redistribution Layer by Using Laser and Photolithography Technologies
【24h】

Next Generation of 2-7 Micron Ultra-Small Microvias for 2.5D Panel Redistribution Layer by Using Laser and Photolithography Technologies

机译:使用激光和光刻技术的用于2.5D面板重新分布层的下一代2-7微米超小型微孔

获取原文

摘要

Microvia is the vertical interconnect structure for multi-layer redistribution layers (RDLs) in high-density interconnect (HDI) printed circuit boards (PCBs), HDI package substrates, 2.5D interposers and fan-out packages. Three technologies such as photolithography, UV laser and excimer laser have been used to form small microvias (≤ 20 µm diameter) in polymer dielectrics. All the three above mentioned technologies are studied and compared in the work presented in this paper. Photovia was first introduced by IBM for Surface Laminar Circuit technology and it has scaled down from 125 µm then to below 10 µm today. The smallest photovia demonstrated is 2 µm in diameter by using 365 nm photolithography in 5 µm thick TOK photo-imageable dielectric (PID) (IF4605) film. Photovias of 3 µm diameter were also demonstrated in 5 µm thick Taiyo Ink dielectric dry film material (PDM) which passed 1,500 thermal cycles (-55 C to 125 C). The limitation of photovia technology is the availability and cost of photo-sensitive dielectric materials with the required electrical, mechanical, thermal and chemical properties. The state-of-the-art microvia diameter is 20 µm by using conventional high-speed UV laser technologies. Multi-layer RDL with microvias and trenches of 4 µm feature sizes are simultaneously fabricated in a 7 µm thick Ajinomoto Build-up Film (ABF) with small fillers by using excimer laser and passed 1,000 thermal cycles (-55 C to 125 C). This paper demonstrates a novel picosecond UV laser technology to push the limits of low-cost UV laser technology by optimizing laser parameters and dielectric materials. The Cornerstone picosecond UV laser tool from ESI is capable of producing output power of 16W at 355 nm wavelength. The pulse duration is 5 ps which minimizes the heat-affected zone of polymer dielectric and the high (80 MHz) repetition rate enables this laser to be used in high throughput manufacturing processes. Microvias with minimum diameter of < 7 µm were fabricated in 5 µm thick ABF with small fillers and in 7 µm thick novel Panasonic low stress dielectric film-S (PLS-S), by using 355 nm picosecond UV laser tool. These ABF and PLS-S films are non-photosensitive dielectric materials. This is the first demonstration of very small microvias (< 7 µm) in polymer dielectrics using UV laser ablation. The motivation of this work is to address the high RDL interconnect density requirements for 2.5D interposer and high density (HD) fan-out packages. The next generation of low-cost, ultra-small microvias will (1) Increase the RDL I/O density, (2) Meet fine bump pitch requirements, (3) Reduce the metal layer count for package substrate RDL, (4) Fill the gap between semiconductor back-end-of-line (BEOL) process and semi-additive process (SAP) and thereby (5) Improve the packaging performance at lower costs.
机译:Microvia是用于高密度互连(HDI)印刷电路板(PCB),HDI封装基板,2.5D中介层和扇出封装中的多层重新分布层(RDL)的垂直互连结构。光刻,紫外激光和受激准分子激光等三项技术已用于在聚合物电介质中形成小的微通孔(直径≤20 µm)。在本文介绍的工作中,对上述所有三种技术进行了研究和比较。 Photovia最初是由IBM推出的表面层电路技术,现已从125 µm缩小到如今的10 µm以下。通过在5 µm厚的TOK光成像电介质(PID)(IF4605)膜中使用365 nm光刻技术,证明最小的光通孔直径为2 µm。在5微米厚的Taiyo墨水电介质干膜材料(PDM)中也演示了直径3微米的光孔,该材料通过了1,500个热循环(-55 C至125 C)。光孔技术的局限性是具有所需的电,机械,热和化学性质的光敏介电材料的可用性和成本。通过使用常规的高速UV激光技术,最新的微孔直径为20 µm。使用准分子激光,同时通过准分子激光器在具有小填充物的7 µm厚度的味之素堆积膜(ABF)中同时制造具有微孔和特征尺寸为4的沟槽的多层RDL,并经过1000次热循环(-55 C至125 C)。本文演示了一种新颖的皮秒紫外激光技术,可通过优化激光参数和介电材料来突破低成本紫外激光技术的极限。 ESI的Cornerstone皮秒紫外激光工具能够在355 nm波长下产生16W的输出功率。脉冲持续时间为5 ps,可最大程度地减少聚合物电介质的热影响区,并且高重复频率(80 MHz)可使该激光器用于高通量制造工艺中。通过使用355 nm皮秒紫外激光工具,在5 µm厚的ABF中用小填料和7 µm厚的新型Panasonic低应力介电膜-S(PLS-S)制造了最小直径<7 µm的微孔。这些ABF和PLS-S膜是非光敏介电材料。这是使用紫外线激光烧蚀的聚合物电介质中非常小的微通孔(<7 µm)的首次演示。这项工作的目的是要满足2.5D插入器和高密度(HD)扇出封装对RDL互连密度的高要求。下一代低成本,超小型微通孔将(1)提高RDL I / O密度,(2)满足精细的凸点间距要求,(3)减少封装基板RDL的金属层数量,(4)填充半导体后端(BEOL)工艺和半加成工艺(SAP)之间的差距,从而(5)以较低的成本提高封装性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号