首页> 外文会议>AIAA/CEAS aeroacoustics conference >Modelling of Boundary Layer Effects on the Attenuation of Buzz-Saw Noise in Lined Ducts
【24h】

Modelling of Boundary Layer Effects on the Attenuation of Buzz-Saw Noise in Lined Ducts

机译:内衬管道中边界层对蜂鸣音衰减的影响建模

获取原文

摘要

Buzz-saw noise is a major contributor to the noise from a modern high-bypass ratio turbofan engine during take-off and climb. In this paper, a hybrid method combines a combination of prediction tools to predict the in-duct sound field, including the effects of non-linear propagation and attenuation by an acoustic liner. The first of these tools is a Computational AeroAcoustics (CAA) code, using the finite element method. This is used to predict linear propagation and attenuation in an acoustically lined intake duct. Non-linear effects, which are significant for high amplitude noise, are accounted for by applying a correction to the linear predictions by using a model of one-dimensional shock wave propagation. The CAA code used in this work is based on the Mohring formulation. The acoustic liner is modelled by the Myers boundary condition, in which the boundary layer of the flow is represented by a vortex sheet. This can result in an over-prediction of the linear attenuation for upstream noise propagation. In reality, a boundary layer of finite thickness refracts the upstream propagating sound away from the liner, thus reducing the attenuation. Solutions of the Pridmore-Brown equation can provide more accurate predictions by accounting for a finite thickness boundary layer. However, higher computational expense limits its use to predict the attenuation of modes in an axial parallel flow in a uniform duct. In this article, an 'effective impedance' is introduced, which provides identical phase and attenuation predictions to a Pridmore-Brown solution for an acoustic mode when used in the Myers boundary condition. This method is validated against measurements from an axisym-metric rig intake test. The use of an effective impedance significantly improves predictions without the additional computational cost associated with resolving the boundary layer in the flow profile.
机译:嗡嗡声是造成起飞和爬升期间现代高旁通比涡轮风扇发动机噪音的主要因素。在本文中,一种混合​​方法结合了预测工具的组合来预测管道中的声场,包括非线性传播和声学衬板衰减的影响。这些工具中的第一个是使用有限元方法的计算航空声学(CAA)代码。这用于预测在隔音衬里的进气管中的线性传播和衰减。通过使用一维冲击波传播模型对线性预测进行校正,可以解决对高振幅噪声很重要的非线性影响。这项工作中使用的CAA代码基于Mohring公式。声学衬里是通过Myers边界条件建模的,其中流动的边界层由涡旋片表示。这可能导致对上游噪声传播的线性衰减的过度预测。实际上,有限厚度的边界层使上游传播的声音从衬里折射出来,从而减小了衰减。通过考虑有限的厚度边界层,Pridmore-Brown方程的解可以提供更准确的预测。但是,较高的计算费用限制了其用于预测均匀管道中轴向平行流中模式的衰减。在本文中,介绍了一种“有效阻抗”,当在Myers边界条件下使用时,它可以为声学模式的Pridmore-Brown解决方案提供相同的相位和衰减预测。该方法针对轴对称装备进气测试的测量结果进行了验证。有效阻抗的使用显着改善了预测,而没有与解决流动剖面中的边界层相关的额外计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号