首页> 外文会议>International Conference on Medical Image Computing and Computer-Assisted Intervention >An Integrated Multi-physics Finite Element Modeling Framework for Deep Brain Stimulation: Preliminary Study on Impact of Brain Shift on Neuronal Pathways
【24h】

An Integrated Multi-physics Finite Element Modeling Framework for Deep Brain Stimulation: Preliminary Study on Impact of Brain Shift on Neuronal Pathways

机译:用于深部脑刺激的集成多物理场有限元建模框架:脑移位对神经元通路的影响的初步研究

获取原文

摘要

Deep brain stimulation (DBS) is an effective therapy for movement disorders. The efficacy of DBS depends on electrode placement accuracy and programming parameter optimization to modulate desired neuron groups and pathways. Compounding the challenge of surgical targeting and therapy delivery is brain shift during DBS burr hole surgery. Brain shift introduces potentially significant misalignment between intraoperative anatomy and preoperative imaging data used for surgical planning and targeting. Brain shift may also impact the volume of tissue activation (VTA) and consequently neuronal pathway recruitment for modulation. This work introduces an integrated framework of patient specific biomechanical and bioelectric models to account for brain shift and examines its impact on DBS delivery. Specifically, the biomechanical model was employed to predict brain shift via an inverse problem approach, which was driven by sparse data derived from interventional magnetic resonance (iMR) imaging data. A bioelectric model consisting of standard conductive physics was employed to predict electric potential maps in the presence of the deformed patient anatomy. The electrode leads for creating the potential maps were reconstructed from iMR visualized trajectory and a known lead model geometry. From the electric potential distribution, the VTA was estimated. In an effort to understand changes to neuronal pathway recruitment, the model displacement field was used to estimate shift impact on the VTA intraoperatively. Finally, VTAs in patient space with and without shift consideration were transformed to an atlas available via the Human Connectome Project where tractography was performed. This enabled the observation and comparison of neuronal pathway recruitment due to VTA distributions with and without shift considerations. Preliminary results using this framework in 2 patients indicate that brain shift impacts the extent, number, and volume of neuronal pathways affected by DBS. Hence consideration of brain shift in DBS burr hole surgery is desired to optimize outcome.
机译:深部脑刺激(DBS)是一种针对运动障碍的有效疗法。 DBS的功效取决于电极的放置精度和编程参数优化,以调节所需的神经元组和通路。 DBS毛刺孔手术期间的大脑转移使外科手术靶向和治疗提供的挑战更加复杂。脑转移在用于手术计划和靶向的术中解剖结构和术前成像数据之间可能引入潜在的重大错位。脑转移可能还会影响组织激活(VTA)的量,并因此影响神经元通路募集以进行调节。这项工作介绍了针对患者的生物力学和生物电模型的集成框架,以说明脑部移位并检查其对DBS递送的影响。具体而言,采用生物力学模型通过逆问题方法预测脑转移,该方法由源自介入磁共振(iMR)成像数据的稀疏数据驱动。使用由标准导电物理学组成的生物电模型来预测存在变形患者解剖结构的电势图。根据iMR可视化轨迹和已知的引线模型几何形状,重建了用于创建电势图的电极引线。根据电势分布,可以估算出VTA。为了了解神经元途径募集的变化,模型位移场用于评估术中移位对VTA的影响。最后,将经过和不考虑轮班考虑的患者空间中的VTA转换为可通过进行人体影像学的Human Connectome Project获得的地图集。这使得可以观察和比较由于VTA分布而引起的神经元通路募集的情况,而没有考虑移位的情况。使用此框架在2位患者中获得的初步结果表明,大脑移位会影响受DBS影响的神经元通路的程度,数量和数量。因此,需要考虑在DBS钻孔手术中考虑脑移位以优化结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号