首页> 外文会议>IEEE International Conference on Nanotechnology >Electrosynthesis of Janus Alginate Hydrogel Microcapsules with Programmable Shapes for Cell Encapsulation
【24h】

Electrosynthesis of Janus Alginate Hydrogel Microcapsules with Programmable Shapes for Cell Encapsulation

机译:电合成具有可编程形状的Janus海藻酸钠水凝胶微胶囊用于细胞包封

获取原文

摘要

Hydrogel microcapsules provide well-defined and biocompatible platforms for 3D cell culture, which is greatly desired for replacing, or enhancing the function of damaged human tissue and in vitro tissue regeneration. Since Alginate-poly-L-lysine alginate microcapsules can provide a liquified environment for biomaterials, traditional fabrication methods such as microfluidic gelation can tune the size and biochemical properties of hydrogel microcapsule, but still, undergo tremendous challenges while tuning the morphology of the hydrogel microcapsules. In this work, we proposed a novel approach to fabricate Janus Alginate-Poly-L-lysine Alginate microcapsule with controllable shape and size based on a two-step hydrogel electrodeposition method. The microelectrode device (fluorine-doped tin oxide (FTO) glass) was etched into two insulating parts by laser processing. After the first step, the electrodeposition solution was removed by adding HEPES solution. During secondary electrodeposition, a higher voltage was employed, since the entrapped hydrogel and unremoved HEPES solution remains upon the surface of the fluorine-doped tin oxide (FTO) glass. After the two-step deposition, the 2D hydrogel Janus structures were detached from the FTO glass. Then they were immersed in Poly-L-lysine solution. Then the 3D Alginate-poly-L-lysine alginate (APA) microcapsules were successfully fabricated and incubated for further observation. We have demonstrated a successful encapsulation of HepG-2 cells in the half of the APA hydrogel microcapsule and the cells are cultured for several days and Janus APA microcapsules are embedded with fluorescence-labelled and non-labelled HepG2 cells to monitor the cell morphology, distribution, as well as their proliferation.
机译:水凝胶微胶囊为3D细胞培养提供了定义明确且具有生物相容性的平台,这对于替换或增强受损的人体组织和体外组织再生的功能非常需要。由于藻酸盐-聚-L-赖氨酸藻酸盐微胶囊可以为生物材料提供液化环境,因此传统的制备方法(例如微流体凝胶化)可以调节水凝胶微胶囊的大小和生化特性,但在调整水凝胶微胶囊的形态时仍会面临巨大挑战。 。在这项工作中,我们基于两步水凝胶电沉积方法,提出了一种新颖的方法来制造具有可控制的形状和大小的藻酸海藻糖-聚-L-赖氨酸藻酸盐微胶囊。通过激光处理将微电极装置(掺氟氧化锡(FTO)玻璃)蚀刻成两个绝缘部分。第一步之后,通过添加HEPES溶液除去电沉积溶液。在二次电沉积期间,由于夹带的水凝胶和未除去的HEPES溶液残留在掺氟氧化锡(FTO)玻璃的表面上,因此使用了较高的电压。在两步沉积之后,将2D水凝胶Janus结构从FTO玻璃上分离下来。然后将它们浸入聚-L-赖氨酸溶液中。然后成功地制备了3D海藻酸盐-聚-L-赖氨酸海藻酸盐(APA)微囊,并进行了温育以进行进一步观察。我们已经证明成功将HepG-2细胞封装在APA水凝胶微胶囊的一半中,并将细胞培养数天,并将Janus APA微胶囊内嵌有荧光标记的和未标记的HepG2细胞,以监控细胞的形态,分布,以及它们的扩散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号