首页> 外文会议>European workshop on modern developments and applications in microbean analysis >CHARACTERISATION OF MAGMATIC-HYDROTHERMAL TOURMALINE FROM THE LAND'S END GRANITE - GOING FROM METRES TO MICROMETRES
【24h】

CHARACTERISATION OF MAGMATIC-HYDROTHERMAL TOURMALINE FROM THE LAND'S END GRANITE - GOING FROM METRES TO MICROMETRES

机译:从陆端花岗岩到岩浆-水热碧玺的特征-从米到微米

获取原文

摘要

Tourmaline from the St. Byron lobe of the Land's End granite shows a great variety in colour and mineral chemistry (Fig. 1). By combining optical properties, major and trace element chemistry and field relations, late-magmatic tourmaline can be distinguished from closed and open system hydrothermal tourmaline. In some localities a transition from disseminated, brown magmatic tourmaline to hydrothermal, blue tourmaline can be directly observed. In other localities, an external, or at least less local, fluid precipitated colourless-green pleochroic tourmaline. The Sn-mineralisation in the area is unequivocally related to this type of tourmaline [1,2]. The data set includes 680 laser ablation inductively coupled mass spectrometry (LA-ICP-MS) and 900 electron probe microanalysis (EPMA) spot analyses of 16 samples from six localities along the SW coast of the Land's End area. The compositional evolution of the major elements of the three main tourmaline types is well established; brown tourmaline plot in the middle of the schorl field, blue tourmaline are more Fe-rich, and green tourmaline plot in the dravite field[1, 3, 4] (Fig. 2). Some trace elements show a correlation with colour and plot as distinct groups in binary plots. This is particularly evident in the Co versus Ni and Zn plots, where blue (~0.2 - 2 μg/g Co, ~150 - 300 μg/g Zn, ~0.5 - 2 μg/g Ni), brown (~10-40 μg/g Co; ~250 - 350 μg/g Zn; ~1 - 40 μg/g Ni) and green (~2 - 20 μg/g Co; ~25 - 60 μg/g Zn; ~30 - 100 μg/g Ni) tourmaline form separate clusters (Fig. 2). Other general trends including groups based on colour are the positive correlations between Sn and Sr and Y. In both cases, all three elements increase from brown to blue to green. Brown and blue tourmaline may also be distinguished in the Sc versus V and Nb versus Ta plots. Growth zoning is commonly observed, typically in the form of a brown core overgrown by a section of oscillatory zoned brown-blue tourmaline, a blue zone, and in some samples an oscillatory zoned pale blue-dark blue zone. This is interpreted to represent the transition from a melt-dominated to a fluid-dominated stage without a significant influence of external fluids. The green tourmaline may crosscut and overprint former tourmaline generations, and is often observed together with quartz as mineral replacements. This is interpreted to be the result of sub-solidus fluid-rock interaction.
机译:Land's End花岗岩的St. Byron裂片中的电气石在颜色和矿物化学方面表现出多种多样的特征(图1)。通过结合光学性质,主要和微量元素化学性质以及场关系,可以将晚期岩浆电气石与封闭和开放系统的热液电气石区分开。在某些地区,可以直接观察到从散布的棕色岩浆电气石到热液蓝色电气石的过渡。在其他地方,外部或至少局部较少的液体沉淀出无色绿色多色电气石。该地区锡矿化与这种类型的电气石无疑相关[1,2]。该数据集包括680个激光烧蚀电感耦合质谱(LA-ICP-MS)和900个电子探针微分析(EPMA)对来自Land End西南海岸6个地区的16个样品进行的斑点分析。三种主要电气石类型的主要元素的成分演化已得到很好的确立。 schorl场中部的棕色电气石样地,蓝色电气石中的铁含量更高,而德拉维特场中的绿色电气石样地[1,3,4](图2)。一些痕量元素在二元图中显示出与颜色和图相关的不同组。这在Co与Ni和Zn曲线图中尤为明显,其中蓝色(〜0.2-2μg/ g Co,〜150-300μg/ g Zn,〜0.5-2μg/ g Ni),棕色(〜10-40 Co(μg/ g);锌〜250-350μg/ g;镍(Ni)〜1-40μg/ g)和绿色(钴(Co)〜2-20μg/ g;锌(Zn)〜25-60μg/ g;锌〜30-100μg/ g) g Ni)电气石形成单独的簇(图2)。其他一般趋势(包括基于颜色的分组)是Sn与Sr和Y之间的正相关。在这两种情况下,所有三个元素都从棕色到蓝色再到绿色增加。棕色电气石和蓝色电气石也可以在Sc与V,Nb与Ta曲线中区分开。通常观察到生长区带,通常为棕色核,其形式是由一段振荡带状的棕蓝色电气石,蓝色区域长满,在某些样品中则是振荡带状的浅蓝色-深蓝色区域。这被解释为代表了从熔融控制阶段到流体控制阶段的过渡,而没有外部流体的显着影响。绿色电气石可能与以前的电气石世代相交并叠印,并且经常与石英一起用作矿物替代品。这被解释为是亚固相线流体-岩石相互作用的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号